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Who are you?
● Newcomers with no assumed knowledge of efficient 

inverted index-based architectures and query processing.

● Experienced Researchers who are keen to sharpen their 
skills and improve their understanding of efficient 
indexing and retrieval.

● Everyone in between! 



Why should you care?
● Despite the best efforts of the IR community, inverted 

indexes just will not die!
○ Sometimes you really do need to find documents that 

contain a specific set of terms;
○ Traditional ranking models like BM25 continue to be a 

strong baseline on unseen data;
○ Inverted indexes tend to scale extremely well as 

collections grow large.



Why should you care?
● Next generation ranking methods such as learned sparse 

retrieval are still making use of inverted indexes.

● Possessing a strong theoretical understanding of 
inverted indexes, including how they can be engineered to 
be efficient in practice, is still very relevant in 2025!

● This tutorial will cover both the theory and practice 
necessary to understand, experiment with, and contribute 
to the future of inverted indexes.



Large-Scale IR
“returning good results quickly is better than returning the best results slowly”
– Dean and Barosso, CACM, 2013.
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https://www.google.com/about/datacenters/gallery



Today’s Plan
Session 1: (Basic) Indexing and Retrieval                             

Morning Tea

Session 2:  Learned Sparse Retrieval             

Session 3:  New Directions

09.00 - 10.30

10.30 – 11.00

11.00 – 12.00

12.00 – 12.30



Intended Learning Outcomes
ILO 1: Theoretical Understanding of Inverted Indexes

ILO2: Fast Top-k Retrieval with Dynamic Pruning

ILO3: Current Trends and Research Directions

ILO4: Experimenting with PISA

ILO5: Integrating PISA into Modern Applications



IR Experimentation



History and Origins of PISA
The PISA engine started off as the Data Structures for Inverted 
Indexes (ds2i) project in 2014.

It formed the basis of “Partitioned Elias Fano Indexes” by Ottaviano 
and Venturini, which won the SIGIR 2014 best paper award, as well 
as “Optimal Space-Time Tradeoffs for Inverted Indexes” by 
Ottaviano, Tonellotto, and Venturini, WSDM 2015.

In 2017, “Faster BlockMax WAND with variable-sized blocks” was 
published at SIGIR by Mallia, Ottaviano, Porciani, Tonellotto, and 
Venturini. At this point, PISA was forked from ds2i. 



The PISA Engine
An efficient, extensible, modern search engine.

● Written in C++17
● In-memory retrieval
● Low-level optimization out-of-the-box: CPU intrinsics, branch 

prediction hinting, …
● Extensible: Plug and play parsing, stemming, compression, query 

processing
● Indexing, parsing, sharding capabilities
● Free, open-source permissive license



Where PISA Shines
Ridiculously fast top-k query processing

Extensible experimentation with easy access to state-of-art methods

Small but active group of maintainers

Interfaces well with other experimental IR systems



Where PISA Pales
Primary focus is on bag-of-words, top-k retrieval

No support for positional indexing, fields, …

Not so user friendly due to high complexity of the codebase
   > See: https://github.com/terrierteam/pyterrier_pisa for a 
higher-level Python API



PISA’s role in the IR Ecosystem

https://www.reddit.com/r/rust/comments/nu1jc7/tantivy_v015_released_now_backed_by_quickwit_inc/
https://jpountz.github.io/2025/05/12/analysis-of-Search-Benchmark-the-Game.html







Session I: Indexing and Retrieval

Setup



Links and Downloads
For the practical component, we will need to grab some data, and 
have some instructions ready.

Prerequisite: You have your own machine with Docker installed.
I will step through on my own machine if you don’t have access. 

You can also experiment with the tutorial at any time (later).

Tutorial: https://shorturl.at/VExpG
Aka: https://github.com/pisa-engine/pisa/blob/main/test/docker/tutorial/instructions.md

Please at least initiate the data download, and the docker image download.

https://shorturl.at/VExpG
https://github.com/pisa-engine/pisa/blob/main/test/docker/tutorial/instructions.md


Links and Downloads



Session I: Indexing and Retrieval

Theory
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Revision: Inverted Indexes

A single posting is a document identifier  
and term frequency pair. Document 2 
contains the word “fun” once.



Revision: Inverted Indexes



Revision: Inverted Indexes

Within a given postings list, 
document identifiers are 
strictly increasing.



Compressed Postings
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Compressed Postings

This is called delta coding and 
is a common pre-processing 
step used to make integer 
compression codecs better.

While out of scope for today, 
integer codecs are typically 
more effective for smaller 
integers. 
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Postings List Compression

Techniques for Inverted Index Compression - Pibiri and Venturini, ACM Computing Surveys, 2020.



Postings List Compression

Techniques for Inverted Index Compression - Pibiri and Venturini, ACM Computing Surveys, 2020.

Key message: It is almost 
always a trade-off. Smaller 
codecs take longer to 
encode/decode, but save 
space. 

The “right” choice depends 
on where you wish to 
operate on the Pareto 
frontier.



Revision: Basic Querying
Now we have our inverted index, how can we query it?
● Lots of flavours of query…
● Let’s start by revising the simple Boolean conjunction
● We’ll then move on to ranked disjunctions, also known as 

top-k retrieval.
● Important to note that matching semantics are separate 

from document ranking. 
○ That is, we can decide to only match documents 

containing all query terms, but we might also decide 
to rank them on the way through! This would be a 
ranked conjunction.
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Revision: Boolean Conjunctions
And so on until we run out of postings…



Revision: Boolean Conjunctions



Hmmm… What about ranking?
Consider our old, faithful friend, BM25 [ATIRE variant]:
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Hmmm… What about ranking?

Number of documents in the collection

Number of docs containing term t

For each query term…

Length of “this” document / Average 
document length

Number of times t appears in “this” document

Where is this stuff stored?

                                                             + Array with (normalized)
   document lengths
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Consider our old, faithful friend, BM25 [ATIRE variant]:

Note how the “query dependent” aspect is just which terms 
get used…
So, we can pre-compute the document/term impacts! And 
store them directly in the index!

Hmmm… What about ranking?

Id,t



Quantized Scoring!

Note how the “query dependent” aspect is just which terms 
get used…
So, we can pre-compute the document/term impacts! And 
store them directly in the index! [After global normalization]

Hmmm… What about ranking?

Id,t
3 4 3
7

7
4 1



For the remainder of this tutorial, we will assume “sum of 
impact” scoring

Instead of storing term frequencies, our postings lists will 
store quantized impacts.

Quantized Scorers

Id,t
3 4 3
7

7
4 1



Top-k Retrieval
Instead of relying on conjunctive matching, let’s trust our 
ranking function and allow disjunctive matching.

Naive algorithm: Scan across all postings lists maintaining a 
min-heap of the k best “so far” documents. For each 
document, compute its score, and add it to the heap if it 
beats the current top element.

At the end of traversal, the heap contains the top-k docs. 
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Top-k Retrieval
● Naive algorithm:

○ Scores every single posting!
○ Which means we decompress every block of 

document identifiers and impacts.
○ But guaranteed to return the rank-safe top-k 

documents.



Dynamic Pruning
What if we didn’t need to score everything in order to get the 
rank-safe top-k results?

Basic Ingredients
● Our ranking function must be additive;
● We must pre-compute and store the maximum impact 

that each postings list contains (offline);
● Our index must support efficient random access.



Dynamic Pruning
What if we didn’t need to score everything in order to get the 
rank-safe top-k results?

Intuition
● Use the top element of the heap as a threshold;
● Estimate the score of each document by summing up the 

list-wise upper-bound scores;
● Only score documents with an estimated score 

exceeding the heap threshold - bypass otherwise.



● During indexing, we must pre-compute the list-wise 
upper-bound score. This is denoted Ut  for term t.

Dynamic Pruning: Index Time

3 4 3

7

7
4 1



● During indexing, we must pre-compute the list-wise 
upper-bound score. This is denoted Ut  for term t.

Dynamic Pruning: Index Time

3 4 3

7

7
4 1

Ut
4
7
4
7



Dynamic Pruning: Query Time



Dynamic Pruning: Query Time

Use the minimum score 
in the heap as a 
threshold



Dynamic Pruning: Walkthrough
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Dynamic Pruning: Walkthrough
How does the skipping work?



Next-GEQ Operator
Dynamic pruning algorithms depend on the efficient 
implementation of the next_geq() operator.

next_geq(n) forwards the postings list cursor to document 
n, if it exists, or the next greater document.

In our block-based index, we retain an uncompressed 
document identifier such that we can skip to the candidate 
block efficiently; then we must seek within the block.



Next-GEQ Operator
pisa/include/pisa/block_posting_list.hpp - Line 127



Next-GEQ Operator

If the element we are searching for is in a different 
block than the current one…



Next-GEQ Operator

This means the element we are searching for is 
larger than the largest element in this postings list. 
So, we return.



Next-GEQ Operator

Walk across the uncompressed structure that 
stores the maximum identifier in each block until 
we exceed the target element



Next-GEQ Operator

Decode the current block into a buffer - this block 
must contain the target element if it exists…



Next-GEQ Operator

Now search within the block to find the element (or 
the next greater one)



Next-GEQ Operator

next_geq(99)



Next-GEQ Operator



Skipping - Saving Work
We do not need to decompress any blocks we skip!

We do not need to score any documents within any of those 
blocks either!

But we do pay overhead deciding whether to skip or not.

We also need to be very careful with which cursor moves 
ahead first. More on this shortly…



Dynamic Pruning Algorithms

WAND - “Weak” or “Weighted” AND
CIKM 2003!



Dynamic Pruning Algorithms

MaxScore
IPM 1995!



Dynamic Pruning Algorithms
WAND and MaxScore are the two main families of 
document-at-a-time dynamic pruning algorithms.

Our worked example was inspired by the WAND algorithm.

With WAND, we must ensure the cursors are always 
processed in ascending order of their current identifier.



Dynamic Pruning: Walkthrough



Dynamic Pruning: Walkthrough

Invariant: The current identifier under each cursor 
must monotonically increase as we move down 
through the cursors.

That is, “the element being pointed to in list at the 
top must be less than or equal to the element 
being pointed to in the list at the bottom”



Dynamic Pruning Algorithms
With WAND, we must ensure the cursors are always 
processed in ascending order of their current identifier.

This means we may need to sort the cursors during 
processing!



WAND: Sorting Cursors
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WAND: Sorting Cursors
Just for fun… What 
happens if we change 
the sorting algorithm?



MaxScore: No Sorting Required!
Instead of sorting the cursors before each iteration, 
MaxScore sorts the lists once before processing begins. 

Typically, this sort is ascending on the list upper bounds.

Can also sort on the posting list lengths - either works.
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MaxScore: No Sorting Required!
Instead of sorting the cursors before each iteration, 
MaxScore sorts the lists once before processing begins.

We then compute the prefix sum of the upper-bound scores. 
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MaxScore: No Sorting Required!
During processing, we split the cursors into two logical sets:
● Essential Lists: A document must have at least one 

essential term to be considered for scoring.
● Non-Essential Lists: Are ignored until a final document 

score needs to be computed.

We only iterate over the essential lists, allowing us to skip 
documents that have no hope of entering the results list.
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MaxScore: No Sorting Required!

Always draw the next candidate document 
from the set of essential lists, accessing the 
non-essential lists only when computing a full 
document score.



WAND



WAND
Find the first document 
that might enter the top-k 
based on the 
upper-bound estimations

This is called the “pivot” 
document.

We also track which lists 
are “in play”.



WAND

We didn’t find a pivot - we 
are done!



WAND

If the first list “points to” 
the pivot document, then 
all lists “in play” are 
pointing to the pivot. We 
score the pivot, try to add 
it to the heap, and then 
re-sort the cursors.



WAND

Otherwise, there are lists 
that point to documents 
smaller than the pivot. We 
need to move them up to 
the pivot before we score. 
Note that this may require 
partial sorting 
(BubbleDown)



MaxScore



MaxScore
Compute the cumulative 
sum of the upper-bounds



MaxScore

The pivot document is the 
minimum document in the 
essential lists. We score 
this document, and also 
track the next pivot 
candidate.



MaxScore

The pivot document may 
also occur in the 
non-essential lists; we 
complete scoring the 
pivot here.



MaxScore

Now we check to see if the 
pivot can enter the heap. If 
so, we may need to adjust 
the boundary between the 
essential and non-essential 
lists.



MaxScore vs WAND
● WAND typically performs well for short queries, and 

small values of k
○ As query length increases, the sorting operations 

become expensive.
○ As k increases, dynamic pruning becomes less 

effective, as the heap threshold is easier to beat, 
meaning we score more documents.



MaxScore vs WAND
● MaxScore typically performs well for long(er) queries, 

and large(r) values of k
○ No sorting required during processing!



MaxScore vs WAND

An Experimental Study of Index Compression and DAAT Query Processing Methods - Mallia, Siedlaczek, Suel, ECIR 2019
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Upper-Bound Estimation
MaxScore and WAND use list-wise upper-bounds to make 
estimations on document scores. These estimations are 
used for “go” or “no go” choices on document scoring.

But using the maximum list-wise score may not be a good 
estimate. How can we do better?



Block-Max Pruning Methods
One approach is to store a per-block upper-bound in 
addition to the list-wise upper-bound score.

The list-wise upper-bounds drive the initial selection of a 
candidate; then a localized upper-bound allows for a more 
accurate decision to be made before proceeding.

The obvious downside is the additional space consumption. 
But this is typically small, and these bounds can be 
compressed.



Block-Max Pruning Methods
We cannot simply use 
the block-max scores to 
decide which pivot to 
score, or we may skip 
documents that should 
be in the top-k.

Some optimisations 
intentionally do this, 
resulting in unsafe 
retrieval.

Faster Top-k Document Retrieval Using Block-Max Indexes: Ding and Suel - SIGIR 2011



Block-Max Pruning Methods
However, we can use 
the block-max bounds 
to make better 
decisions on what to 
process next!

In this case, the current 
block “configuration” 
cannot yield a 
document that will be 
admitted into the top-k.

Faster Top-k Document Retrieval Using Block-Max Indexes: Ding and Suel - SIGIR 2011



Block-Max Pruning Methods
Many versions of Block-Max MaxScore and Block-Max WAND
● Window-Based Blocks
● Live-Block Pruning
● Conditional Skipping
● Hybrid Approaches (LazyBM)
● Many more…

Intuitively, all of these algorithms are variations that improve 
the plain BMM/BMW algorithms through specific 
observations; the literature is dense!



Variable-Sized Blocks
Intuition: Fixed-size 
blocks may cause large 
within-block errors. 
Instead, find a 
variable-length 
partition that reduces 
error rate.

Faster BlockMax WAND with Variable-sized Blocks - Mallia, Ottaviano, Porciani, Tonellotto, Venturini - SIGIR 2017



The Ranker does Matter!

Finding the Best of Both Worlds: Faster and More Robust Top-k Document Retrieval - Khattab, Hammoud, Elsayed - SIGIR 2020



The Ranker does Matter!

Exploring the Magic of WAND - Petri, Culpepper, Moffat, ADCS 2013.
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Exploring the Magic of WAND - Petri, Culpepper, Moffat, ADCS 2013.
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An Experimental Study of Index Compression and DAAT Query Processing Methods - Mallia, Siedlaczek, Suel, ECIR 2019
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An Experimental Study of Index Compression and DAAT Query Processing Methods - Mallia, Siedlaczek, Suel, ECIR 2019
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If we can “cluster” similar documents together, we will 
get lots of runs of “1”s in our postings lists

Recall: Postings are strictly increasing on document id, 
so we delta code them.
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Other Enhancements
Experiment: All 
combinations of 
priming, quantization, 
reordering, stopping on 
Clueweb12B (52 million 
web documents).

Efficiency innovations 
are, broadly speaking, 
additive!

Examining the Additivity of Top-k Query Processing Innovations: Mackenzie and Moffat - CIKM 2020
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web documents).

Efficiency innovations 
are, broadly speaking, 
additive!
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Rule(s) of Thumb
1. Use MaxScore when queries are long, or k is large; Use 

VBMW otherwise;
2. Stopping is almost always a good idea;
3. Use index reordering if you can afford it (offline cost);
4. If you don’t know which (statistical) ranker to use, just 

stick to BM25 - it is fast, and well behaved;
5. Empirical experimentation is always beneficial!



Session I: Indexing and Retrieval

Practice



Indexing and Querying with PISA
We will now work through Section 1 of the practical.

Tutorial: https://shorturl.at/VExpG
Aka: https://github.com/pisa-engine/pisa/blob/main/test/docker/tutorial/instructions.md

https://shorturl.at/VExpG
https://github.com/pisa-engine/pisa/blob/main/test/docker/tutorial/instructions.md


Session 1.5: Discussion & Coffee



Session II: Learned Sparse Retrieval
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The key characteristic that makes 
inverted indexes work is sparsity.

|Psearcn| ≪ |C| 

Terms are only related to a 
small number of documents
Well… Mostly (see stopwords)



The key characteristic that makes 
inverted indexes work is sparsity.

🔍 cool search |Q| ≪ |V| 

Queries are only “about” 
a small number of terms



Up to now, we’ve relied on the presence of 
terms in documents/queries to enforce 
sparsity.

This works because of Zipf’s Law – very few 
terms typically have high frequently in a corpus.

A plot of the frequency of each word as a function of its 
frequency rank for two English language texts. CC BY-SA 4.0



Query: F1 winner

Document: Max Verstappen says 3rd Formula One world championship title is his 'best one' so far

LOSAIL, Qatar (AP) — Max Verstappen believes his third Formula One title is his best yet.

Clinching the championship in a sprint race Saturday in Qatar didn't pack the emotional impact of his 
dramatic, controversial last-lap overtake of Lewis Hamilton for the 2021 title. Still, the Red Bull driver thinks 
his relentlessly consistent 2023 season has been his greatest so far.

“This one is the best one,” Verstappen said. “I think the first one was the most emotional one because 
that’s when your dreams are fulfilled in Formula One. But this one definitely in my opinion has been my 
best year also for consecutive wins and stuff. The car itself has been probably in the best shape as well. 
This one is probably (the one) I’m most proud of in a way because of consistency.”

…

Source: AP Online News

Working Example



Maps a query and document to a sparse “bag-of-words” representation using:
 - TF (importance of term to the document, based on repetition)
 - IDF (relative importance of term to the query, based on how many documents it 
appears in)
 - Other Lexical Signals (e.g., document length for normalization, etc.)

Term-Based Representations



Maps a query and document to a sparse “bag-of-words” representation using:
 - TF (importance of term to the document, based on repetition)
 - IDF (relative importance of term to the query, based on how many documents it 
appears in)
 - Other Lexical Signals (e.g., document length for normalization, etc.)

Query: { f1: 10, win: 3 }

Document: { verstappen: 17, race:  13, one: 11, titl:  10, 
           formula: 8, grand: 7, prix: 7, saturday: 6,
           qatar: 6, win: 5, sunday: 4, ..., max: 2, ... }

Term-Based Representations



Problems with term-based representations:

 (1) TF and IDF aren’t always good estimators of term importance

Example: “Saturday” probably isn’t more important than “Sunday” in the article
(if anything, “Sunday” is more important to the document – that’s when the race was)

Term-Based Representations



Term-Based Representations

Problems with term-based representations:

 (1) TF and IDF aren’t always good estimators of term importance

Example: “Saturday” probably isn’t more important than “Sunday” in the article
(if anything, “Sunday” is more important to the document – that’s when the race was)

 (2) Lexical mismatch: variations of terms that appear in the query/document

Example: “F1” is very important in the article, but isn’t mentioned
(similar terms are, though, e.g., “Formula One”)



Learned Sparse Retrieval (LSR) uses
neural networks to produce better 
bag-of-words representations

(addressing the aforementioned issues)



Learned Sparse Retrieval

Three key techniques:

 (1) Term weighting (addresses importance estimation)
 (2) Expansion (addresses lexical mismatch)
 (3) Sparsification (manages compute & storage efficiency of (2))



Main idea: Use a neural network to estimate the “importance” of each token.
                        Implemented as a token-level prediction task.

(1) Term Weighting

max ver ##stap ##pen says 3 ##rd formula one world champion ...

BERT / RoBERTA / etc.

10  12    11    12    2  4   1    18     16   8      7



Main idea: Use a neural network to estimate the “importance” of each token.
{formula: 18, one: 16, ver: 12, ##pen: 12, ##stap: 11, ...}

(1) Term Weighting

max ver ##stap ##pen says 3 ##rd formula one world champion ...

BERT / RoBERTA / etc.

10  12    11    12    2  4   1    18     16   8      7



Term weighting can be applied to the document [1] and/or the query [2].
They can even learn what to remove (weight=0) [3]

[1] Zhuyun Dai, Jamie Callan. Context-Aware Sentence/Passage Term Importance Estimation
For First Stage Retrieval. arxiv 2019. link

[2] Sean MacAvaney, Franco Maria Nardini, Raffaele Perego, Nicola Tonellotto, Nazli Goharian, Ophir Frieder. 
Expansion via Prediction of Importance with Contextualization. SIGIR 2020. Link

[3] Mackenzie et al. Efficiency Implications of Term Weighting for Passage Retrieval. SIGIR 2020. link

(1) Term Weighting

https://arxiv.org/abs/1910.10687
https://arxiv.org/abs/2004.14245
https://www.cs.cmu.edu/~zhuyund/papers/SIGIR2020DeepCT-efficiency.pdf


(2) Expansion

Goal: Identify new terms to add to the document (and estimate their importance)

Two main approaches:

 (2a) External Expansion

 (2b) Masked Language Modeling (MLM) Expansion



(2a) External Expansion

Use another model (such as Doc2Query [1]) to add expansion tokens to document [2], then 
apply term weighting.

[1] Rodrigo Nogueira, Wei Yang, Jimmy Lin, Kyunghyun Cho. Document Expansion by Query Prediction. arxiv 2019. link

[2] Antonio Mallia, Omar Khattab, Nicola Tonellotto, Torsten Suel. Learning Passage Impacts for Inverted Indexes. SIGIR 
2021. link

(2) Expansion

Doc2Query, etc.

“Max Verstappen says 
3rd Formula One 
world championship 
title is his 'best one' so 
far…”

 - How many F1 championships has 
Verstappen won?
 - What did Max Verstappen say 
about winning his third racing 
championship?
…

https://arxiv.org/abs/1904.08375
https://arxiv.org/abs/2104.12016


(2a) External Expansion

Use another model (such as Doc2Query [1]) to add expansion tokens to document [2], then 
apply term weighting.

[1] Rodrigo Nogueira, Wei Yang, Jimmy Lin, Kyunghyun Cho. Document Expansion by Query Prediction. arxiv 2019. Link

[2] Antonio Mallia, Omar Khattab, Nicola Tonellotto, Torsten Suel. Learning Passage Impacts for Inverted Indexes. SIGIR 
2021. link

(2) Expansion

BERT / RoBERTA / 
etc.

“Max Verstappen says 3rd Formula One 
world championship title is his 'best one' 
so far…” + “How many F1 
championships has Verstappen 
won?” + …

[term weights]Doc2Query, 
etc.

https://arxiv.org/abs/1904.08375
https://arxiv.org/abs/2104.12016


(2b) Masked Language Modeling Expansion

Use the model’s Masked Language Modelling head to get expansion terms.

(2) Expansion



(2b) Masked Language Modeling Expansion

Use the model’s Masked Language Modelling head to get expansion terms.

Review: Pre-training a BERT-like language model

(2) Expansion

max ver ##stap ##pen [MASK] 3 ##rd formula one world champion ...

BERT / RoBERTA / etc.

{says: 0.3, suggests: 0.2, said: 0.2, tweeted: 0.1, ...}

Masked Language Modeling Head



(2b) Masked Language Modeling Expansion

Use the model’s Masked Language Modelling head to get expansion terms.

(2) Expansion

BERT / RoBERTA / etc.

max ver ##stap ##pen says 3 ##rd formula one world champion ...

{formula: 0.8, f1: 0.2, ...}



(2b) Masked Language Modeling Expansion

Use the model’s Masked Language Modelling head to get expansion terms.

{formula: 18, one: 16, ver: 12, ##pen: 12, f1: 10, ...}

(2) Expansion

BERT / RoBERTA / etc.

max ver ##stap ##pen says 3 ##rd formula one world champion ...

{…} {…}  {…}    {…}  {…}{…}  {…}  {…}   {…}  {…}    {…}



(2b) MLM Expansion can be learned end-to end, and can be applied to
the document [1] and/or the query [2].

[1] Sean MacAvaney, Franco Maria Nardini, Raffaele Perego, Nicola Tonellotto, Nazli Goharian,
Ophir Frieder. Expansion via Prediction of Importance with Contextualization. SIGIR 2020. link

[2] Thibault Formal, Benjamin Piwowarski and Stéphane Clinchant. SPLADE: Sparse Lexical and
Expansion Model for First Stage Ranking. SIGIR 2021. Link

[3] Zhuang and Zuccon. Fast Passage Re-ranking with Contextualized Exact Term Matching and 
Efficient Passage Expansion. link

(2) Expansion

https://arxiv.org/abs/2004.14245
https://arxiv.org/abs/2107.05720
https://arxiv.org/abs/2108.08513


MLM Expansion actually makes the output vectors dense – it computes an
importance score for every token in the lexicon (10’s of thousands of dimensions).

We could index these vectors in dense vector stores, but they’re very large,
and this makes retrieval slow.

Instead, we sparsify, allowing vectors to be used in typical inverted indexes (e.g., Lucene)

Sparsification approaches:

 (3a): Top-K Pruning [1] (post-hoc pruning of lowest vector dimensions)

 (3b): FLOPS Regularisation [2] (end-to-end optimisation to push dimensions to zero)

 (3c): DF-FLOPS Regularisation [3] (objective to reduce number of terms per document)
[1] Sean MacAvaney, Franco Maria Nardini, Raffaele Perego, Nicola Tonellotto, Nazli Goharian, Ophir Frieder. Expansion
via Prediction of Importance with Contextualization. SIGIR 2020. link
[2] Thibault Formal, Benjamin Piwowarski and Stéphane Clinchant. SPLADE: Sparse Lexical and Expansion Model for
First Stage Ranking. SIGIR 2021. Link
[3] Porco et al.  An Alternative to FLOPS Regularization to Effectively Productionize SPLADE-doc. SIGIR 2025. link

(3) Sparsification

https://arxiv.org/abs/2004.14245
https://arxiv.org/abs/2107.05720
https://arxiv.org/abs/2505.15070


In general:

Query Weighting (query expansion only helps a little when document is expanded)
+
Document MLM Expansion
+
Regularisation (for optimal trade-offs) or Top-K (for flexibility)

(Find out more in the Neural Lexical Search with Learned Sparse Retrieval tutorial this afternoon.)

Which LSR methods produce better relevance 
estimates?



How do LSR methods affect retrieval algorithms?



Term Weighting greatly affects impact distributions

Normalized maximum list impact dis-
tribution stratified by list length buckets 
b ∈ [2^b, 2^b+1).



Term Weighting greatly affects impact distributions

Long posting lists 
have low BM25 
impact scores

Long posting lists 
have high learned 

impact scores



Term Weighting greatly affects impact distributions

! This means we need to visit more 
blocks in long posting lists, increasing 
traversal time



Term Weighting greatly affects impact distributions



Distributions Make or Break Efficiency

Efficient top-k processing algorithms use term 
upper-bound scores to bypass documents which 
cannot score highly.

● These algorithms find it more difficult to 
effectively prune the search space with the 
impact distributions from learned sparse 
models.

● More documents are scored; query 
processing is slower.



There are very long posting lists, too.

Porco et al. An Alternative to FLOPS Regularization to Effectively Productionize SPLADE-Doc. SIGIR 2025.

Some posting lists 
contain (nearly) 
every document.



There are very long posting lists, too. Why?

Mackenzie et al. Exploring the Representation Power of SPLADE Models. ICTIR 2023.

androgen receptor define →

Some tokens are repurposed and included in many queries and documents.

Ends up being partially a pseudo “dense” vector.



There are very long posting lists, too.

|Psearcn| ≪ |C| 

Assumption no longer holds.



Expansion causes much less sparsity in queries/docs



Expansion causes much less sparsity in queries/docs

🔍 cool search |Q| ≪ |V| 

|D0| ≪ |V| 

|D1| ≪ |V| 

|D2| ≪ |V| 

Assumptions no longer hold.



So what can we we do about these problems?



Guided Traversal (GT)
It proposes guided traversal to accelerate top-k 
processing with learned sparse models.

● The original BM25 score for each document 
(over a DocT5Query expanded index) is 
stored alongside the learned (DeepImpact) 
score.

● At query time, BM25 is used to guide the 
index traversal, but scores are computed via 
the learned model (Guided Traversal — GT).

● The BM25 score can also be interpolated 
with the DeepImpact score on-the-fly 
(Guided Traversal with Interpolation — GTI).

Mallia et al. "Faster learned sparse retrieval with guided traversal." SIGIR 2022.



Guided Traversal (GT)



Guided Traversal (GT)

Mallia et al. "Faster learned sparse retrieval with guided traversal." SIGIR 2022.



Two-Level Guided Traversal (2GT)

Qiao et al. "Optimizing guided traversal for fast learned sparse retrieval." WWW 2023.

Global pruning – hybrid BM25 + learned upper 
bounds filter whole posting-list regions.

Local pruning – hybrid bounds tighten inside each 
candidate document.

Alignment smoothing makes BM25 weights denser 
to match the learned index.

Two tunable coefficients (α for global, β for local) cap 
BM25’s influence and prevent over-aggressive skips. 



Postings Clipping

Priming can be applied whenever 
any high-impact list contains k or 
more postings

can be used as a priming value for 
the heap bound, without risking the 
integrity of the top-k answers.



ASC

Qiao et al. Threshold-driven Pruning with Segmented Maximum Term Weights for Approximate Cluster-based Sparse Retrieval. EMNLP 2024.

Segmented bounds: slice each cluster into n 
random segments, store per-segment max 
weights → tighter MaxSBound / AvgSBound

Two-level test: prune cluster if MaxSBound ≤ θ ⁄ μ 
and AvgSBound ≤ θ ⁄ η; else dive to doc-level 
pruning at θ ⁄ η. 

Parameters: 0 < μ ≤ η ≤ 1. Pick μ for 
aggressiveness, η (often 1) for probabilistic safety.



Seismic

Bruch et al. Efficient Inverted Indexes for Approximate Retrieval over Learned Sparse Representations. SIGIR 2024.

An approximate retrieval solution that trades off exact 
search for efficiency.

It relies on:

● Concentration of Importance

● Static Document Pruning

● Block Upper Bounds 



Seismic

Bruch et al. Efficient Inverted Indexes for Approximate Retrieval over Learned Sparse Representations. SIGIR 2024.



Documents as Sparse Vectors



Block partitioning: The document ID space is split into fixed-size blocks; 
each block stores a pre-computed vector of its terms’ maximum impact 
scores.

Per-block upper bounds: At query time, term weights are applied to those 
block-max vectors and summed, producing an overall score upper bound for 
every block.

Priority-driven evaluation: Blocks are visited in descending order of their 
upper-bound scores (lazy sorting) until a stopping criterion is satisfied.

Hybrid access: When a block is chosen, lookup switches to a forward-style 
structure embedded alongside the inverted lists, enabling fast in-block scoring 
without full postings scans.

Block-Max Pruning

Mallia et al. Faster Learned Sparse Retrieval with Block-Max Pruning. SIGIR 2024.



Clustering of Documents

Imagine assigning consecutive docIDs to similar documents.

First focus on better compression.

Recently, more focus on faster query processing.



Bipartite Graph Partitioning



Bipartite Graph Partitioning

deg(x) is the degree of a node

n is the number of distinct 
neighbors

The average log gap cost can be 
proxied with
  

Dhulipala et al. Compressing graphs and indexes with recursive graph bisection. KDD 2016



Graph Bisection
Bisect the graph in two sets

Compute move gains of the vertices. The 
difference in average logarithmic gap length 
between remaining and moving

Swap vertices between the two sets

Repeat recursively until stopping condition 
triggers



Recursive Graph Bisection



Dynamic Superblock Pruning

Carlson et al. Dynamic Superblock Pruning for Fast Learned Sparse Retrieval. SIGIR 2025

Two-tier index: group consecutive document blocks into fixed-size superblocks (e.g., 64 blocks) 

Top-down test: first bound each superblock; prune it if both max- and avg-score ≤ θ/μ, θ/η, then 
descend to surviving blocks 



Dynamic Superblock Pruning



SPRAWL
Sorted PRefix Access With Lookups

It uses a two-tier in-memory index:
● A prefix index that stores top-scoring postings (sorted by impact scores in descending 

order) for frequent terms and pairs of terms.
● A standard inverted index that containing all standard (single-term) postings and that 

efficiently supports random lookups.

Gou et al. "Fast and Effective Early Termination for Simple Ranking Functions." SIGIR 2025.



Rough notes/stuff we need
- Relevant links to bibliographies
- Relevant links to PISA/PyTerrier/Slack Channes/Resources/etc
- Guide on contributing to PISA
- Other codebases of interest (broader PISA/Terrier/etc projects)



Session III: Future Directions / Soapboxes



Joel’s Soapbox
Long live the inverted index!

Moving towards Rust.



Sean’s Soapbox



The PISA Ecosystem



CIFF
Common Index File Format CIFF is an inverted index exchange format as 
defined as part of the Open-Source IR Replicability Challenge (OSIRRC) 
initiative.

We built tools to convert:

● a CIFF blob to a PISA canonical: ciff2pisa
● a PISA canonical to a CIFF blob: pisa2ciff
● a JSONL file to a CIFF blob: jsonl2ciff

Jimmy Lin et al. Supporting Interoperability Between Open-Source Search Engines with the Common Index File Format. SIGIR 2020.



CIFF-Hub



Trades off some flexibility and efficiency for convenience.

Indexing:

Python Integration



Trades off some flexibility and efficiency for convenience.

Retrieval:

Python Integration



Trades off some flexibility and efficiency for convenience.

Sharing Indexes:

Python Integration

https://huggingface.co/datasets?other=pyterrier-artifact.sparse_index.pisa

https://huggingface.co/datasets?other=pyterrier-artifact.sparse_index.pisa


The future of the PISA engine

● We want to build a more user-friendly platform.

● Seamless notebooks – one-command Colab template.

● First-class LSR support.

● MCP server – lightweight micro-control-plane exposing REST/gRPC endpoints for search & 
index-management

● AI hooks for RAG: flexible connectors that integrate embedding, hybrid retrieval, and LLM 
post-processing.



Cascading Retrieval
Build a multi-level architecture, from simple to complex (= cheap to expensive)



Hybrid Retrieval

Perform hybrid retrieval via rank fusion mechanisms 

Fusion for Information Retrieval is the the process of 
combining multiple sources of information to produce a 
single result list in response to a query.



Reranking

MacAvaney et al. "Efficient Constant-Space Multi-vector Retrieval." ECIR 2025.

Two-stage retrieval process inverted index-based candidate generation and multi-vector 
reranking.


