
SIGIR 2025 – Padua, Italy – July 2025

Efficient In-Memory Inverted Indexes
Theory and Practice

Joel Mackenzie
The University of

Queensland

Sean MacAvaney
University of

Glasgow

Antonio Mallia
Pinecone

Michal Siedlaczek
MongoDB, Inc.

Who are we?

Joel Mackenzie
The University of

Queensland

Sean MacAvaney
University of

Glasgow

Antonio Mallia
Pinecone

Michal Siedlaczek
MongoDB, Inc.

https://jmmackenzie.io/
https://macavaney.us/
https://www.antoniomallia.it/
https://siedlaczek.me/

Early Career Academics/Practitioners
interested in efficient and effective IR
systems. All very keen on empirical,
“hands-on” research and development.

https://jmmackenzie.io/
https://macavaney.us/
https://www.antoniomallia.it/
https://siedlaczek.me/

Who are you?
● Newcomers with no assumed knowledge of efficient

inverted index-based architectures and query processing.

● Experienced Researchers who are keen to sharpen their
skills and improve their understanding of efficient
indexing and retrieval.

● Everyone in between!

Why should you care?
● Despite the best efforts of the IR community, inverted

indexes just will not die!
○ Sometimes you really do need to find documents that

contain a specific set of terms;
○ Traditional ranking models like BM25 continue to be a

strong baseline on unseen data;
○ Inverted indexes tend to scale extremely well as

collections grow large.

Why should you care?
● Next generation ranking methods such as learned sparse

retrieval are still making use of inverted indexes.

● Possessing a strong theoretical understanding of
inverted indexes, including how they can be engineered to
be efficient in practice, is still very relevant in 2025!

● This tutorial will cover both the theory and practice
necessary to understand, experiment with, and contribute
to the future of inverted indexes.

Large-Scale IR
“returning good results quickly is better than returning the best results slowly”
– Dean and Barosso, CACM, 2013.

Large-Scale IR
“returning good results quickly is better than returning the best results slowly”
– Dean and Barosso, CACM, 2013.

Large-Scale IR

Large-Scale IR

Large-Scale IR

https://www.google.com/about/datacenters/gallery

Today’s Plan
Session 1: (Basic) Indexing and Retrieval

Morning Tea

Session 2: Learned Sparse Retrieval

Session 3: New Directions

09.00 - 10.30

10.30 – 11.00

11.00 – 12.00

12.00 – 12.30

Intended Learning Outcomes
ILO 1: Theoretical Understanding of Inverted Indexes

ILO2: Fast Top-k Retrieval with Dynamic Pruning

ILO3: Current Trends and Research Directions

ILO4: Experimenting with PISA

ILO5: Integrating PISA into Modern Applications

IR Experimentation

History and Origins of PISA
The PISA engine started off as the Data Structures for Inverted
Indexes (ds2i) project in 2014.

It formed the basis of “Partitioned Elias Fano Indexes” by Ottaviano
and Venturini, which won the SIGIR 2014 best paper award, as well
as “Optimal Space-Time Tradeoffs for Inverted Indexes” by
Ottaviano, Tonellotto, and Venturini, WSDM 2015.

In 2017, “Faster BlockMax WAND with variable-sized blocks” was
published at SIGIR by Mallia, Ottaviano, Porciani, Tonellotto, and
Venturini. At this point, PISA was forked from ds2i.

The PISA Engine
An efficient, extensible, modern search engine.

● Written in C++17
● In-memory retrieval
● Low-level optimization out-of-the-box: CPU intrinsics, branch

prediction hinting, …
● Extensible: Plug and play parsing, stemming, compression, query

processing
● Indexing, parsing, sharding capabilities
● Free, open-source permissive license

Where PISA Shines
Ridiculously fast top-k query processing

Extensible experimentation with easy access to state-of-art methods

Small but active group of maintainers

Interfaces well with other experimental IR systems

Where PISA Pales
Primary focus is on bag-of-words, top-k retrieval

No support for positional indexing, fields, …

Not so user friendly due to high complexity of the codebase
 > See: https://github.com/terrierteam/pyterrier_pisa for a
higher-level Python API

PISA’s role in the IR Ecosystem

https://www.reddit.com/r/rust/comments/nu1jc7/tantivy_v015_released_now_backed_by_quickwit_inc/
https://jpountz.github.io/2025/05/12/analysis-of-Search-Benchmark-the-Game.html

Session I: Indexing and Retrieval

Setup

Links and Downloads
For the practical component, we will need to grab some data, and
have some instructions ready.

Prerequisite: You have your own machine with Docker installed.
I will step through on my own machine if you don’t have access.

You can also experiment with the tutorial at any time (later).

Tutorial: https://shorturl.at/VExpG
Aka: https://github.com/pisa-engine/pisa/blob/main/test/docker/tutorial/instructions.md

Please at least initiate the data download, and the docker image download.

https://shorturl.at/VExpG
https://github.com/pisa-engine/pisa/blob/main/test/docker/tutorial/instructions.md

Links and Downloads

Session I: Indexing and Retrieval

Theory

Revision: Text Indexing

Revision: Text Indexing

Revision: Text Indexing

Revision: Text Indexing

Revision: Text Indexing

Revision: Text Indexing

Revision: Text Indexing

Revision: Text Indexing

Revision: Text Indexing

Revision: Text Indexing

Revision: Text Indexing

Revision: Text Indexing

Revision: Text Indexing

Revision: Text Indexing

Revision: Text Indexing

…

Revision: Text Indexing

Revision: Text Indexing

Revision: Inverted Indexes

Revision: Inverted Indexes

Revision: Inverted Indexes

Revision: Inverted Indexes

Revision: Inverted Indexes

Revision: Inverted Indexes

A single posting is a document identifier
and term frequency pair. Document 2
contains the word “fun” once.

Revision: Inverted Indexes

Revision: Inverted Indexes

Within a given postings list,
document identifiers are
strictly increasing.

Compressed Postings

Compressed Postings

Compressed Postings

Compressed Postings

Compressed Postings

Compressed Postings

Compressed Postings

Compressed Postings

Compressed Postings

This is called delta coding and
is a common pre-processing
step used to make integer
compression codecs better.

While out of scope for today,
integer codecs are typically
more effective for smaller
integers.

Compressed Postings

Compressed Postings

Prefix-Sum Problem

Prefix-Sum Problem
But what if I want to access the
nth document identifier?

Prefix-Sum Problem
But what if I want to access the
nth document identifier?

Sum these deltas up

Prefix-Sum Problem
But what if I want to access the
nth document identifier?

Prefix-Sum Problem
But what if I want to access the
nth document identifier?

Prefix-Sum Problem
But what if I want to access the
nth document identifier?

Store the first identifier of
each block directly - then
prefix sums are only required
within each block!

Prefix-Sum Problem
But what if I want to access the
nth document identifier?

Store the first identifier of
each block directly - then
prefix sums are only required
within each block!

Block-Based Indexes

Block-Based Indexes

Block-Based Indexes

Block-Based Indexes

Postings List Compression

Techniques for Inverted Index Compression - Pibiri and Venturini, ACM Computing Surveys, 2020.

Postings List Compression

Techniques for Inverted Index Compression - Pibiri and Venturini, ACM Computing Surveys, 2020.

Key message: It is almost
always a trade-off. Smaller
codecs take longer to
encode/decode, but save
space.

The “right” choice depends
on where you wish to
operate on the Pareto
frontier.

Revision: Basic Querying
Now we have our inverted index, how can we query it?
● Lots of flavours of query…
● Let’s start by revising the simple Boolean conjunction
● We’ll then move on to ranked disjunctions, also known as

top-k retrieval.
● Important to note that matching semantics are separate

from document ranking.
○ That is, we can decide to only match documents

containing all query terms, but we might also decide
to rank them on the way through! This would be a
ranked conjunction.

Revision: Boolean Conjunctions

Revision: Boolean Conjunctions

Revision: Boolean Conjunctions

Revision: Boolean Conjunctions

Revision: Boolean Conjunctions

Revision: Boolean Conjunctions

Revision: Boolean Conjunctions

Revision: Boolean Conjunctions

Revision: Boolean Conjunctions

Revision: Boolean Conjunctions

Revision: Boolean Conjunctions

Revision: Boolean Conjunctions

Revision: Boolean Conjunctions

Revision: Boolean Conjunctions

Revision: Boolean Conjunctions

Revision: Boolean Conjunctions

Revision: Boolean Conjunctions

Revision: Boolean Conjunctions

Revision: Boolean Conjunctions

Revision: Boolean Conjunctions

Revision: Boolean Conjunctions

Revision: Boolean Conjunctions

Revision: Boolean Conjunctions

Revision: Boolean Conjunctions

Revision: Boolean Conjunctions

Revision: Boolean Conjunctions

Revision: Boolean Conjunctions

Revision: Boolean Conjunctions

Revision: Boolean Conjunctions

Revision: Boolean Conjunctions

Revision: Boolean Conjunctions

Revision: Boolean Conjunctions

Revision: Boolean Conjunctions

Revision: Boolean Conjunctions

Revision: Boolean Conjunctions

Revision: Boolean Conjunctions
And so on until we run out of postings…

Revision: Boolean Conjunctions

Hmmm… What about ranking?
Consider our old, faithful friend, BM25 [ATIRE variant]:

Hmmm… What about ranking?

Number of documents in the collection

Number of docs containing term t

For each query term…

Length of “this” document / Average
document length

Number of times t appears in “this” document

Consider our old, faithful friend, BM25 [ATIRE variant]:

Consider our old, faithful friend, BM25 [ATIRE variant]:

Hmmm… What about ranking?

Hmmm… What about ranking?

Number of documents in the collection

Number of docs containing term t

For each query term…

Length of “this” document / Average
document length

Number of times t appears in “this” document

Where is this stuff stored?

Hmmm… What about ranking?

Number of documents in the collection

Number of docs containing term t

For each query term…

Length of “this” document / Average
document length

Number of times t appears in “this” document

Where is this stuff stored?

 + Array with (normalized)
 document lengths

Consider our old, faithful friend, BM25 [ATIRE variant]:

Note how the “query dependent” aspect is just which terms
get used…

Hmmm… What about ranking?

Consider our old, faithful friend, BM25 [ATIRE variant]:

Note how the “query dependent” aspect is just which terms
get used…
So, we can pre-compute the document/term impacts!

Hmmm… What about ranking?

Consider our old, faithful friend, BM25 [ATIRE variant]:

Note how the “query dependent” aspect is just which terms
get used…
So, we can pre-compute the document/term impacts!

Hmmm… What about ranking?

Id,t

Consider our old, faithful friend, BM25 [ATIRE variant]:

Note how the “query dependent” aspect is just which terms
get used…
So, we can pre-compute the document/term impacts! And
store them directly in the index!

Hmmm… What about ranking?

Id,t

Quantized Scoring!

Note how the “query dependent” aspect is just which terms
get used…
So, we can pre-compute the document/term impacts! And
store them directly in the index! [After global normalization]

Hmmm… What about ranking?

Id,t
3 4 3
7

7
4 1

For the remainder of this tutorial, we will assume “sum of
impact” scoring

Instead of storing term frequencies, our postings lists will
store quantized impacts.

Quantized Scorers

Id,t
3 4 3
7

7
4 1

Top-k Retrieval
Instead of relying on conjunctive matching, let’s trust our
ranking function and allow disjunctive matching.

Naive algorithm: Scan across all postings lists maintaining a
min-heap of the k best “so far” documents. For each
document, compute its score, and add it to the heap if it
beats the current top element.

At the end of traversal, the heap contains the top-k docs.

Top-k Retrieval

Top-k Retrieval

Top-k Retrieval

Top-k Retrieval

Top-k Retrieval

Top-k Retrieval

Top-k Retrieval

Top-k Retrieval

Top-k Retrieval

Top-k Retrieval

Top-k Retrieval

Top-k Retrieval

Top-k Retrieval

Top-k Retrieval
● Naive algorithm:

○ Scores every single posting!
○ Which means we decompress every block of

document identifiers and impacts.
○ But guaranteed to return the rank-safe top-k

documents.

Dynamic Pruning
What if we didn’t need to score everything in order to get the
rank-safe top-k results?

Basic Ingredients
● Our ranking function must be additive;
● We must pre-compute and store the maximum impact

that each postings list contains (offline);
● Our index must support efficient random access.

Dynamic Pruning
What if we didn’t need to score everything in order to get the
rank-safe top-k results?

Intuition
● Use the top element of the heap as a threshold;
● Estimate the score of each document by summing up the

list-wise upper-bound scores;
● Only score documents with an estimated score

exceeding the heap threshold - bypass otherwise.

● During indexing, we must pre-compute the list-wise
upper-bound score. This is denoted Ut for term t.

Dynamic Pruning: Index Time

3 4 3

7

7
4 1

● During indexing, we must pre-compute the list-wise
upper-bound score. This is denoted Ut for term t.

Dynamic Pruning: Index Time

3 4 3

7

7
4 1

Ut
4
7
4
7

Dynamic Pruning: Query Time

Dynamic Pruning: Query Time

Use the minimum score
in the heap as a
threshold

Dynamic Pruning: Walkthrough

Dynamic Pruning: Walkthrough

Dynamic Pruning: Walkthrough

Dynamic Pruning: Walkthrough

Dynamic Pruning: Walkthrough

Dynamic Pruning: Walkthrough

Dynamic Pruning: Walkthrough

Dynamic Pruning: Walkthrough

Dynamic Pruning: Walkthrough

Dynamic Pruning: Walkthrough

Dynamic Pruning: Walkthrough

Dynamic Pruning: Walkthrough

Dynamic Pruning: Walkthrough

Dynamic Pruning: Walkthrough

Dynamic Pruning: Walkthrough

Dynamic Pruning: Walkthrough

Dynamic Pruning: Walkthrough

Dynamic Pruning: Walkthrough

Dynamic Pruning: Walkthrough

Dynamic Pruning: Walkthrough

Dynamic Pruning: Walkthrough

Dynamic Pruning: Walkthrough

Dynamic Pruning: Walkthrough

Dynamic Pruning: Walkthrough

Dynamic Pruning: Walkthrough

Dynamic Pruning: Walkthrough

Dynamic Pruning: Walkthrough

Dynamic Pruning: Walkthrough

Dynamic Pruning: Walkthrough

Dynamic Pruning: Walkthrough

Dynamic Pruning: Walkthrough

Dynamic Pruning: Walkthrough

Dynamic Pruning: Walkthrough
How does the skipping work?

Next-GEQ Operator
Dynamic pruning algorithms depend on the efficient
implementation of the next_geq() operator.

next_geq(n) forwards the postings list cursor to document
n, if it exists, or the next greater document.

In our block-based index, we retain an uncompressed
document identifier such that we can skip to the candidate
block efficiently; then we must seek within the block.

Next-GEQ Operator
pisa/include/pisa/block_posting_list.hpp - Line 127

Next-GEQ Operator

If the element we are searching for is in a different
block than the current one…

Next-GEQ Operator

This means the element we are searching for is
larger than the largest element in this postings list.
So, we return.

Next-GEQ Operator

Walk across the uncompressed structure that
stores the maximum identifier in each block until
we exceed the target element

Next-GEQ Operator

Decode the current block into a buffer - this block
must contain the target element if it exists…

Next-GEQ Operator

Now search within the block to find the element (or
the next greater one)

Next-GEQ Operator

next_geq(99)

Next-GEQ Operator

Skipping - Saving Work
We do not need to decompress any blocks we skip!

We do not need to score any documents within any of those
blocks either!

But we do pay overhead deciding whether to skip or not.

We also need to be very careful with which cursor moves
ahead first. More on this shortly…

Dynamic Pruning Algorithms

WAND - “Weak” or “Weighted” AND
CIKM 2003!

Dynamic Pruning Algorithms

MaxScore
IPM 1995!

Dynamic Pruning Algorithms
WAND and MaxScore are the two main families of
document-at-a-time dynamic pruning algorithms.

Our worked example was inspired by the WAND algorithm.

With WAND, we must ensure the cursors are always
processed in ascending order of their current identifier.

Dynamic Pruning: Walkthrough

Dynamic Pruning: Walkthrough

Invariant: The current identifier under each cursor
must monotonically increase as we move down
through the cursors.

That is, “the element being pointed to in list at the
top must be less than or equal to the element
being pointed to in the list at the bottom”

Dynamic Pruning Algorithms
With WAND, we must ensure the cursors are always
processed in ascending order of their current identifier.

This means we may need to sort the cursors during
processing!

WAND: Sorting Cursors

WAND: Sorting Cursors

WAND: Sorting Cursors

WAND: Sorting Cursors
Just for fun… What
happens if we change
the sorting algorithm?

MaxScore: No Sorting Required!
Instead of sorting the cursors before each iteration,
MaxScore sorts the lists once before processing begins.

Typically, this sort is ascending on the list upper bounds.

Can also sort on the posting list lengths - either works.

MaxScore: No Sorting Required!
Instead of sorting the cursors before each iteration,
MaxScore sorts the lists once before processing begins.

MaxScore: No Sorting Required!
Instead of sorting the cursors before each iteration,
MaxScore sorts the lists once before processing begins.

MaxScore: No Sorting Required!
Instead of sorting the cursors before each iteration,
MaxScore sorts the lists once before processing begins.

MaxScore: No Sorting Required!
Instead of sorting the cursors before each iteration,
MaxScore sorts the lists once before processing begins.

We then compute the prefix sum of the upper-bound scores.

MaxScore: No Sorting Required!

MaxScore: No Sorting Required!

MaxScore: No Sorting Required!

MaxScore: No Sorting Required!
During processing, we split the cursors into two logical sets:
● Essential Lists: A document must have at least one

essential term to be considered for scoring.
● Non-Essential Lists: Are ignored until a final document

score needs to be computed.

We only iterate over the essential lists, allowing us to skip
documents that have no hope of entering the results list.

MaxScore: No Sorting Required!

MaxScore: No Sorting Required!

MaxScore: No Sorting Required!

MaxScore: No Sorting Required!

Always draw the next candidate document
from the set of essential lists, accessing the
non-essential lists only when computing a full
document score.

WAND

WAND
Find the first document
that might enter the top-k
based on the
upper-bound estimations

This is called the “pivot”
document.

We also track which lists
are “in play”.

WAND

We didn’t find a pivot - we
are done!

WAND

If the first list “points to”
the pivot document, then
all lists “in play” are
pointing to the pivot. We
score the pivot, try to add
it to the heap, and then
re-sort the cursors.

WAND

Otherwise, there are lists
that point to documents
smaller than the pivot. We
need to move them up to
the pivot before we score.
Note that this may require
partial sorting
(BubbleDown)

MaxScore

MaxScore
Compute the cumulative
sum of the upper-bounds

MaxScore

The pivot document is the
minimum document in the
essential lists. We score
this document, and also
track the next pivot
candidate.

MaxScore

The pivot document may
also occur in the
non-essential lists; we
complete scoring the
pivot here.

MaxScore

Now we check to see if the
pivot can enter the heap. If
so, we may need to adjust
the boundary between the
essential and non-essential
lists.

MaxScore vs WAND
● WAND typically performs well for short queries, and

small values of k
○ As query length increases, the sorting operations

become expensive.
○ As k increases, dynamic pruning becomes less

effective, as the heap threshold is easier to beat,
meaning we score more documents.

MaxScore vs WAND
● MaxScore typically performs well for long(er) queries,

and large(r) values of k
○ No sorting required during processing!

MaxScore vs WAND

An Experimental Study of Index Compression and DAAT Query Processing Methods - Mallia, Siedlaczek, Suel, ECIR 2019

MaxScore vs WAND

An Experimental Study of Index Compression and DAAT Query Processing Methods - Mallia, Siedlaczek, Suel, ECIR 2019

Visualizing Dynamic Pruning

Visualizing Dynamic Pruning

Visualizing Dynamic Pruning

Visualizing Dynamic Pruning

Visualizing Dynamic Pruning

Visualizing Dynamic Pruning

Visualizing Dynamic Pruning

Upper-Bound Estimation
MaxScore and WAND use list-wise upper-bounds to make
estimations on document scores. These estimations are
used for “go” or “no go” choices on document scoring.

But using the maximum list-wise score may not be a good
estimate. How can we do better?

Block-Max Pruning Methods
One approach is to store a per-block upper-bound in
addition to the list-wise upper-bound score.

The list-wise upper-bounds drive the initial selection of a
candidate; then a localized upper-bound allows for a more
accurate decision to be made before proceeding.

The obvious downside is the additional space consumption.
But this is typically small, and these bounds can be
compressed.

Block-Max Pruning Methods
We cannot simply use
the block-max scores to
decide which pivot to
score, or we may skip
documents that should
be in the top-k.

Some optimisations
intentionally do this,
resulting in unsafe
retrieval.

Faster Top-k Document Retrieval Using Block-Max Indexes: Ding and Suel - SIGIR 2011

Block-Max Pruning Methods
However, we can use
the block-max bounds
to make better
decisions on what to
process next!

In this case, the current
block “configuration”
cannot yield a
document that will be
admitted into the top-k.

Faster Top-k Document Retrieval Using Block-Max Indexes: Ding and Suel - SIGIR 2011

Block-Max Pruning Methods
Many versions of Block-Max MaxScore and Block-Max WAND
● Window-Based Blocks
● Live-Block Pruning
● Conditional Skipping
● Hybrid Approaches (LazyBM)
● Many more…

Intuitively, all of these algorithms are variations that improve
the plain BMM/BMW algorithms through specific
observations; the literature is dense!

Variable-Sized Blocks
Intuition: Fixed-size
blocks may cause large
within-block errors.
Instead, find a
variable-length
partition that reduces
error rate.

Faster BlockMax WAND with Variable-sized Blocks - Mallia, Ottaviano, Porciani, Tonellotto, Venturini - SIGIR 2017

The Ranker does Matter!

Finding the Best of Both Worlds: Faster and More Robust Top-k Document Retrieval - Khattab, Hammoud, Elsayed - SIGIR 2020

The Ranker does Matter!

Exploring the Magic of WAND - Petri, Culpepper, Moffat, ADCS 2013.

The Ranker does Matter!

Exploring the Magic of WAND - Petri, Culpepper, Moffat, ADCS 2013.

MaxScore vs VBMW

An Experimental Study of Index Compression and DAAT Query Processing Methods - Mallia, Siedlaczek, Suel, ECIR 2019

MaxScore vs VBMW

An Experimental Study of Index Compression and DAAT Query Processing Methods - Mallia, Siedlaczek, Suel, ECIR 2019

Other Enhancements
● Threshold Priming: If we can make a good estimate of

the terminal heap threshold before processing, we can
skip more documents!

Other Enhancements
● Threshold Priming: If we can make a good estimate of

the terminal heap threshold before processing, we can
skip more documents!

Other Enhancements
● Threshold Priming: If we can make a good estimate of

the terminal heap threshold before processing, we can
skip more documents!

Other Enhancements
● Threshold Priming: If we can make a good estimate of

the terminal heap threshold before processing, we can
skip more documents!

Other Enhancements
● Threshold Priming: If we can make a good estimate of

the terminal heap threshold before processing, we can
skip more documents!

Other Enhancements
● Index Reordering (Document Identifier Reassignment)

If we can “cluster” similar documents together, we will
get lots of runs of “1”s in our postings lists

Recall: Postings are strictly increasing on document id,
so we delta code them.

Other Enhancements
● Index Reordering (Document Identifier Reassignment)

If we can “cluster” similar documents together, we will
get lots of runs of “1”s in our postings lists

Recall: Postings are strictly increasing on document id,
so we delta code them.

Other Enhancements
Experiment: All
combinations of
priming, quantization,
reordering, stopping on
Clueweb12B (52 million
web documents).

Efficiency innovations
are, broadly speaking,
additive!

Examining the Additivity of Top-k Query Processing Innovations: Mackenzie and Moffat - CIKM 2020

Other Enhancements
Experiment: All
combinations of
priming, quantization,
reordering, stopping on
Clueweb12B (52 million
web documents).

Efficiency innovations
are, broadly speaking,
additive!

Examining the Additivity of Top-k Query Processing Innovations: Mackenzie and Moffat - CIKM 2020

Rule(s) of Thumb
1. Use MaxScore when queries are long, or k is large; Use

VBMW otherwise;
2. Stopping is almost always a good idea;
3. Use index reordering if you can afford it (offline cost);
4. If you don’t know which (statistical) ranker to use, just

stick to BM25 - it is fast, and well behaved;
5. Empirical experimentation is always beneficial!

Session I: Indexing and Retrieval

Practice

Indexing and Querying with PISA
We will now work through Section 1 of the practical.

Tutorial: https://shorturl.at/VExpG
Aka: https://github.com/pisa-engine/pisa/blob/main/test/docker/tutorial/instructions.md

https://shorturl.at/VExpG
https://github.com/pisa-engine/pisa/blob/main/test/docker/tutorial/instructions.md

Session 1.5: Discussion & Coffee

Session II: Learned Sparse Retrieval

The key characteristic that makes
inverted indexes work is sparsity.

The key characteristic that makes
inverted indexes work is sparsity.

|D0| ≪ |V|

|D1| ≪ |V|

|D2| ≪ |V|

…

The key characteristic that makes
inverted indexes work is sparsity.

|D0| ≪ |V|

|D1| ≪ |V|

|D2| ≪ |V|

Thousands-Millions
(number of words in English)

The key characteristic that makes
inverted indexes work is sparsity.

|D0| ≪ |V|

|D1| ≪ |V|

|D2| ≪ |V|

3 Thousands-Millions
(number of words in English)

The key characteristic that makes
inverted indexes work is sparsity.

|D0| ≪ |V|

|D1| ≪ |V|

|D2| ≪ |V|

Documents are only “about” a
small number of terms

The key characteristic that makes
inverted indexes work is sparsity.

|Psearcn| ≪ |C|

3 Thousands-Billions
(number of documents in corpus)

The key characteristic that makes
inverted indexes work is sparsity.

|Psearcn| ≪ |C|

Terms are only related to a
small number of documents
Well… Mostly (see stopwords)

The key characteristic that makes
inverted indexes work is sparsity.

🔍 cool search |Q| ≪ |V|

Queries are only “about”
a small number of terms

Up to now, we’ve relied on the presence of
terms in documents/queries to enforce
sparsity.

This works because of Zipf’s Law – very few
terms typically have high frequently in a corpus.

A plot of the frequency of each word as a function of its
frequency rank for two English language texts. CC BY-SA 4.0

Query: F1 winner

Document: Max Verstappen says 3rd Formula One world championship title is his 'best one' so far

LOSAIL, Qatar (AP) — Max Verstappen believes his third Formula One title is his best yet.

Clinching the championship in a sprint race Saturday in Qatar didn't pack the emotional impact of his
dramatic, controversial last-lap overtake of Lewis Hamilton for the 2021 title. Still, the Red Bull driver thinks
his relentlessly consistent 2023 season has been his greatest so far.

“This one is the best one,” Verstappen said. “I think the first one was the most emotional one because
that’s when your dreams are fulfilled in Formula One. But this one definitely in my opinion has been my
best year also for consecutive wins and stuff. The car itself has been probably in the best shape as well.
This one is probably (the one) I’m most proud of in a way because of consistency.”

…

Source: AP Online News

Working Example

Maps a query and document to a sparse “bag-of-words” representation using:
 - TF (importance of term to the document, based on repetition)
 - IDF (relative importance of term to the query, based on how many documents it
appears in)
 - Other Lexical Signals (e.g., document length for normalization, etc.)

Term-Based Representations

Maps a query and document to a sparse “bag-of-words” representation using:
 - TF (importance of term to the document, based on repetition)
 - IDF (relative importance of term to the query, based on how many documents it
appears in)
 - Other Lexical Signals (e.g., document length for normalization, etc.)

Query: { f1: 10, win: 3 }

Document: { verstappen: 17, race: 13, one: 11, titl: 10,
 formula: 8, grand: 7, prix: 7, saturday: 6,
 qatar: 6, win: 5, sunday: 4, ..., max: 2, ... }

Term-Based Representations

Problems with term-based representations:

 (1) TF and IDF aren’t always good estimators of term importance

Example: “Saturday” probably isn’t more important than “Sunday” in the article
(if anything, “Sunday” is more important to the document – that’s when the race was)

Term-Based Representations

Term-Based Representations

Problems with term-based representations:

 (1) TF and IDF aren’t always good estimators of term importance

Example: “Saturday” probably isn’t more important than “Sunday” in the article
(if anything, “Sunday” is more important to the document – that’s when the race was)

 (2) Lexical mismatch: variations of terms that appear in the query/document

Example: “F1” is very important in the article, but isn’t mentioned
(similar terms are, though, e.g., “Formula One”)

Learned Sparse Retrieval (LSR) uses
neural networks to produce better
bag-of-words representations

(addressing the aforementioned issues)

Learned Sparse Retrieval

Three key techniques:

 (1) Term weighting (addresses importance estimation)
 (2) Expansion (addresses lexical mismatch)
 (3) Sparsification (manages compute & storage efficiency of (2))

Main idea: Use a neural network to estimate the “importance” of each token.
 Implemented as a token-level prediction task.

(1) Term Weighting

max ver ##stap ##pen says 3 ##rd formula one world champion ...

BERT / RoBERTA / etc.

10 12 11 12 2 4 1 18 16 8 7

Main idea: Use a neural network to estimate the “importance” of each token.
{formula: 18, one: 16, ver: 12, ##pen: 12, ##stap: 11, ...}

(1) Term Weighting

max ver ##stap ##pen says 3 ##rd formula one world champion ...

BERT / RoBERTA / etc.

10 12 11 12 2 4 1 18 16 8 7

Term weighting can be applied to the document [1] and/or the query [2].
They can even learn what to remove (weight=0) [3]

[1] Zhuyun Dai, Jamie Callan. Context-Aware Sentence/Passage Term Importance Estimation
For First Stage Retrieval. arxiv 2019. link

[2] Sean MacAvaney, Franco Maria Nardini, Raffaele Perego, Nicola Tonellotto, Nazli Goharian, Ophir Frieder.
Expansion via Prediction of Importance with Contextualization. SIGIR 2020. Link

[3] Mackenzie et al. Efficiency Implications of Term Weighting for Passage Retrieval. SIGIR 2020. link

(1) Term Weighting

https://arxiv.org/abs/1910.10687
https://arxiv.org/abs/2004.14245
https://www.cs.cmu.edu/~zhuyund/papers/SIGIR2020DeepCT-efficiency.pdf

(2) Expansion

Goal: Identify new terms to add to the document (and estimate their importance)

Two main approaches:

 (2a) External Expansion

 (2b) Masked Language Modeling (MLM) Expansion

(2a) External Expansion

Use another model (such as Doc2Query [1]) to add expansion tokens to document [2], then
apply term weighting.

[1] Rodrigo Nogueira, Wei Yang, Jimmy Lin, Kyunghyun Cho. Document Expansion by Query Prediction. arxiv 2019. link

[2] Antonio Mallia, Omar Khattab, Nicola Tonellotto, Torsten Suel. Learning Passage Impacts for Inverted Indexes. SIGIR
2021. link

(2) Expansion

Doc2Query, etc.

“Max Verstappen says
3rd Formula One
world championship
title is his 'best one' so
far…”

 - How many F1 championships has
Verstappen won?
 - What did Max Verstappen say
about winning his third racing
championship?
…

https://arxiv.org/abs/1904.08375
https://arxiv.org/abs/2104.12016

(2a) External Expansion

Use another model (such as Doc2Query [1]) to add expansion tokens to document [2], then
apply term weighting.

[1] Rodrigo Nogueira, Wei Yang, Jimmy Lin, Kyunghyun Cho. Document Expansion by Query Prediction. arxiv 2019. Link

[2] Antonio Mallia, Omar Khattab, Nicola Tonellotto, Torsten Suel. Learning Passage Impacts for Inverted Indexes. SIGIR
2021. link

(2) Expansion

BERT / RoBERTA /
etc.

“Max Verstappen says 3rd Formula One
world championship title is his 'best one'
so far…” + “How many F1
championships has Verstappen
won?” + …

[term weights]Doc2Query,
etc.

https://arxiv.org/abs/1904.08375
https://arxiv.org/abs/2104.12016

(2b) Masked Language Modeling Expansion

Use the model’s Masked Language Modelling head to get expansion terms.

(2) Expansion

(2b) Masked Language Modeling Expansion

Use the model’s Masked Language Modelling head to get expansion terms.

Review: Pre-training a BERT-like language model

(2) Expansion

max ver ##stap ##pen [MASK] 3 ##rd formula one world champion ...

BERT / RoBERTA / etc.

{says: 0.3, suggests: 0.2, said: 0.2, tweeted: 0.1, ...}

Masked Language Modeling Head

(2b) Masked Language Modeling Expansion

Use the model’s Masked Language Modelling head to get expansion terms.

(2) Expansion

BERT / RoBERTA / etc.

max ver ##stap ##pen says 3 ##rd formula one world champion ...

{formula: 0.8, f1: 0.2, ...}

(2b) Masked Language Modeling Expansion

Use the model’s Masked Language Modelling head to get expansion terms.

{formula: 18, one: 16, ver: 12, ##pen: 12, f1: 10, ...}

(2) Expansion

BERT / RoBERTA / etc.

max ver ##stap ##pen says 3 ##rd formula one world champion ...

{…} {…} {…} {…} {…}{…} {…} {…} {…} {…} {…}

(2b) MLM Expansion can be learned end-to end, and can be applied to
the document [1] and/or the query [2].

[1] Sean MacAvaney, Franco Maria Nardini, Raffaele Perego, Nicola Tonellotto, Nazli Goharian,
Ophir Frieder. Expansion via Prediction of Importance with Contextualization. SIGIR 2020. link

[2] Thibault Formal, Benjamin Piwowarski and Stéphane Clinchant. SPLADE: Sparse Lexical and
Expansion Model for First Stage Ranking. SIGIR 2021. Link

[3] Zhuang and Zuccon. Fast Passage Re-ranking with Contextualized Exact Term Matching and
Efficient Passage Expansion. link

(2) Expansion

https://arxiv.org/abs/2004.14245
https://arxiv.org/abs/2107.05720
https://arxiv.org/abs/2108.08513

MLM Expansion actually makes the output vectors dense – it computes an
importance score for every token in the lexicon (10’s of thousands of dimensions).

We could index these vectors in dense vector stores, but they’re very large,
and this makes retrieval slow.

Instead, we sparsify, allowing vectors to be used in typical inverted indexes (e.g., Lucene)

Sparsification approaches:

 (3a): Top-K Pruning [1] (post-hoc pruning of lowest vector dimensions)

 (3b): FLOPS Regularisation [2] (end-to-end optimisation to push dimensions to zero)

 (3c): DF-FLOPS Regularisation [3] (objective to reduce number of terms per document)
[1] Sean MacAvaney, Franco Maria Nardini, Raffaele Perego, Nicola Tonellotto, Nazli Goharian, Ophir Frieder. Expansion
via Prediction of Importance with Contextualization. SIGIR 2020. link
[2] Thibault Formal, Benjamin Piwowarski and Stéphane Clinchant. SPLADE: Sparse Lexical and Expansion Model for
First Stage Ranking. SIGIR 2021. Link
[3] Porco et al. An Alternative to FLOPS Regularization to Effectively Productionize SPLADE-doc. SIGIR 2025. link

(3) Sparsification

https://arxiv.org/abs/2004.14245
https://arxiv.org/abs/2107.05720
https://arxiv.org/abs/2505.15070

In general:

Query Weighting (query expansion only helps a little when document is expanded)
+
Document MLM Expansion
+
Regularisation (for optimal trade-offs) or Top-K (for flexibility)

(Find out more in the Neural Lexical Search with Learned Sparse Retrieval tutorial this afternoon.)

Which LSR methods produce better relevance
estimates?

How do LSR methods affect retrieval algorithms?

Term Weighting greatly affects impact distributions

Normalized maximum list impact dis-
tribution stratified by list length buckets
b ∈ [2^b, 2^b+1).

Term Weighting greatly affects impact distributions

Long posting lists
have low BM25
impact scores

Long posting lists
have high learned

impact scores

Term Weighting greatly affects impact distributions

! This means we need to visit more
blocks in long posting lists, increasing
traversal time

Term Weighting greatly affects impact distributions

Distributions Make or Break Efficiency

Efficient top-k processing algorithms use term
upper-bound scores to bypass documents which
cannot score highly.

● These algorithms find it more difficult to
effectively prune the search space with the
impact distributions from learned sparse
models.

● More documents are scored; query
processing is slower.

There are very long posting lists, too.

Porco et al. An Alternative to FLOPS Regularization to Effectively Productionize SPLADE-Doc. SIGIR 2025.

Some posting lists
contain (nearly)
every document.

There are very long posting lists, too. Why?

Mackenzie et al. Exploring the Representation Power of SPLADE Models. ICTIR 2023.

androgen receptor define →

Some tokens are repurposed and included in many queries and documents.

Ends up being partially a pseudo “dense” vector.

There are very long posting lists, too.

|Psearcn| ≪ |C|

Assumption no longer holds.

Expansion causes much less sparsity in queries/docs

Expansion causes much less sparsity in queries/docs

🔍 cool search |Q| ≪ |V|

|D0| ≪ |V|

|D1| ≪ |V|

|D2| ≪ |V|

Assumptions no longer hold.

So what can we we do about these problems?

Guided Traversal (GT)
It proposes guided traversal to accelerate top-k
processing with learned sparse models.

● The original BM25 score for each document
(over a DocT5Query expanded index) is
stored alongside the learned (DeepImpact)
score.

● At query time, BM25 is used to guide the
index traversal, but scores are computed via
the learned model (Guided Traversal — GT).

● The BM25 score can also be interpolated
with the DeepImpact score on-the-fly
(Guided Traversal with Interpolation — GTI).

Mallia et al. "Faster learned sparse retrieval with guided traversal." SIGIR 2022.

Guided Traversal (GT)

Guided Traversal (GT)

Mallia et al. "Faster learned sparse retrieval with guided traversal." SIGIR 2022.

Two-Level Guided Traversal (2GT)

Qiao et al. "Optimizing guided traversal for fast learned sparse retrieval." WWW 2023.

Global pruning – hybrid BM25 + learned upper
bounds filter whole posting-list regions.

Local pruning – hybrid bounds tighten inside each
candidate document.

Alignment smoothing makes BM25 weights denser
to match the learned index.

Two tunable coefficients (α for global, β for local) cap
BM25’s influence and prevent over-aggressive skips.

Postings Clipping

Priming can be applied whenever
any high-impact list contains k or
more postings

can be used as a priming value for
the heap bound, without risking the
integrity of the top-k answers.

ASC

Qiao et al. Threshold-driven Pruning with Segmented Maximum Term Weights for Approximate Cluster-based Sparse Retrieval. EMNLP 2024.

Segmented bounds: slice each cluster into n
random segments, store per-segment max
weights → tighter MaxSBound / AvgSBound

Two-level test: prune cluster if MaxSBound ≤ θ ⁄ μ
and AvgSBound ≤ θ ⁄ η; else dive to doc-level
pruning at θ ⁄ η.

Parameters: 0 < μ ≤ η ≤ 1. Pick μ for
aggressiveness, η (often 1) for probabilistic safety.

Seismic

Bruch et al. Efficient Inverted Indexes for Approximate Retrieval over Learned Sparse Representations. SIGIR 2024.

An approximate retrieval solution that trades off exact
search for efficiency.

It relies on:

● Concentration of Importance

● Static Document Pruning

● Block Upper Bounds

Seismic

Bruch et al. Efficient Inverted Indexes for Approximate Retrieval over Learned Sparse Representations. SIGIR 2024.

Documents as Sparse Vectors

Block partitioning: The document ID space is split into fixed-size blocks;
each block stores a pre-computed vector of its terms’ maximum impact
scores.

Per-block upper bounds: At query time, term weights are applied to those
block-max vectors and summed, producing an overall score upper bound for
every block.

Priority-driven evaluation: Blocks are visited in descending order of their
upper-bound scores (lazy sorting) until a stopping criterion is satisfied.

Hybrid access: When a block is chosen, lookup switches to a forward-style
structure embedded alongside the inverted lists, enabling fast in-block scoring
without full postings scans.

Block-Max Pruning

Mallia et al. Faster Learned Sparse Retrieval with Block-Max Pruning. SIGIR 2024.

Clustering of Documents

Imagine assigning consecutive docIDs to similar documents.

First focus on better compression.

Recently, more focus on faster query processing.

Bipartite Graph Partitioning

Bipartite Graph Partitioning

deg(x) is the degree of a node

n is the number of distinct
neighbors

The average log gap cost can be
proxied with

Dhulipala et al. Compressing graphs and indexes with recursive graph bisection. KDD 2016

Graph Bisection
Bisect the graph in two sets

Compute move gains of the vertices. The
difference in average logarithmic gap length
between remaining and moving

Swap vertices between the two sets

Repeat recursively until stopping condition
triggers

Recursive Graph Bisection

Dynamic Superblock Pruning

Carlson et al. Dynamic Superblock Pruning for Fast Learned Sparse Retrieval. SIGIR 2025

Two-tier index: group consecutive document blocks into fixed-size superblocks (e.g., 64 blocks)

Top-down test: first bound each superblock; prune it if both max- and avg-score ≤ θ/μ, θ/η, then
descend to surviving blocks

Dynamic Superblock Pruning

SPRAWL
Sorted PRefix Access With Lookups

It uses a two-tier in-memory index:
● A prefix index that stores top-scoring postings (sorted by impact scores in descending

order) for frequent terms and pairs of terms.
● A standard inverted index that containing all standard (single-term) postings and that

efficiently supports random lookups.

Gou et al. "Fast and Effective Early Termination for Simple Ranking Functions." SIGIR 2025.

Rough notes/stuff we need
- Relevant links to bibliographies
- Relevant links to PISA/PyTerrier/Slack Channes/Resources/etc
- Guide on contributing to PISA
- Other codebases of interest (broader PISA/Terrier/etc projects)

Session III: Future Directions / Soapboxes

Joel’s Soapbox
Long live the inverted index!

Moving towards Rust.

Sean’s Soapbox

The PISA Ecosystem

CIFF
Common Index File Format CIFF is an inverted index exchange format as
defined as part of the Open-Source IR Replicability Challenge (OSIRRC)
initiative.

We built tools to convert:

● a CIFF blob to a PISA canonical: ciff2pisa
● a PISA canonical to a CIFF blob: pisa2ciff
● a JSONL file to a CIFF blob: jsonl2ciff

Jimmy Lin et al. Supporting Interoperability Between Open-Source Search Engines with the Common Index File Format. SIGIR 2020.

CIFF-Hub

Trades off some flexibility and efficiency for convenience.

Indexing:

Python Integration

Trades off some flexibility and efficiency for convenience.

Retrieval:

Python Integration

Trades off some flexibility and efficiency for convenience.

Sharing Indexes:

Python Integration

https://huggingface.co/datasets?other=pyterrier-artifact.sparse_index.pisa

https://huggingface.co/datasets?other=pyterrier-artifact.sparse_index.pisa

The future of the PISA engine

● We want to build a more user-friendly platform.

● Seamless notebooks – one-command Colab template.

● First-class LSR support.

● MCP server – lightweight micro-control-plane exposing REST/gRPC endpoints for search &
index-management

● AI hooks for RAG: flexible connectors that integrate embedding, hybrid retrieval, and LLM
post-processing.

Cascading Retrieval
Build a multi-level architecture, from simple to complex (= cheap to expensive)

Hybrid Retrieval

Perform hybrid retrieval via rank fusion mechanisms

Fusion for Information Retrieval is the the process of
combining multiple sources of information to produce a
single result list in response to a query.

Reranking

MacAvaney et al. "Efficient Constant-Space Multi-vector Retrieval." ECIR 2025.

Two-stage retrieval process inverted index-based candidate generation and multi-vector
reranking.

