Efficient In-Memory Inverted Indexes

Theory and Practice

PISA

Joel Mackenzie Sean MacAvaney Antonio Mallia Michal Siedlaczek
The University of University of Pinecone MongoDB, Inc.
Queensland Glasgow

L])
2/ Terrier-
SIGIR 2025 - Padua, Italy - July 2025

Who are we?

Joel Mackenzie Sean MacAvaney Antonio Mallia Michal Siedlaczek
The University of University of Pinecone MongoDB, Inc.
Queensland Glasgow
Early Career Academics/Practitioners https://jmmackenzie.io/
interested in efficient and effective IR https://macavaney.us/
systems. All very keen on empirical, https://www.antoniomallia.it/

“hands-on” research and development. https://siedlaczek.me/

https://jmmackenzie.io/
https://macavaney.us/
https://www.antoniomallia.it/
https://siedlaczek.me/

Who are you?

e Newcomers with no assumed knowledge of efficient
Inverted index-based architectures and query processing.

e Experienced Researchers who are keen to sharpen their
skills and improve their understanding of efficient
Indexing and retrieval.

e Everyone in between!

Why should you care?

e Despite the best efforts of the IR community, inverted

iIndexes just will not die!

o Sometimes you really do need to find documents that
contain a specific set of terms;

o Traditional ranking models like BM25 continue to be a
strong baseline on unseen data;

o Inverted indexes tend to scale extremely well as
collections grow large.

Why should you care?

e Next generation ranking methods such as /earned sparse
retrieval are still making use of inverted indexes.

e Possessing a strong theoretical understanding of
iInverted indexes, including how they can be engineered to
be efficient in practice, is still very relevant in 2025!

e This tutorial will cover both the theory and practice
necessary to understand, experiment with, and contribute
to the future of inverted indexes.

Large-Scale IR

“returning good results quickly is better than returning the best results slowly”
- Dean and Barosso, CACM, 2013.

Time since query was submitted [seconds]

Faster than expected Slower than expected
Surprised A d
Happy nnoye
2 Frustrated
(I) Glad ; : g
Excited Angry Disappointed

Joyful [rritated

Large-Scale IR

“returning good results quickly is better than returning the best results slowly”
- Dean and Barosso, CACM, 2013.

Time since query was submitted [seconds]

Slower than expected

Angry Frustrated
0 1 2 Irritated

: | ! » Gone Forever
Annoyed

1
Disappointed

Large-Scale IR

World Wide Web

Interface

Tr

Large-Scale IR

World Wide Web

Crawler

Indexer Queny User
Engine Interface
Query

Large-Scale IR

https://www.google.com/about/datacenters/gallery

Today'’s Plan

Session 1: (Basic) Indexing and Retrieval 09.00 - 10.30
Morning Tea 10.30 - 11.00
Session 2: Learned Sparse Retrieval 11.00 - 12.00

Session 3: New Directions 12.00 - 12.30

Intfended Learning Outcomes

ILO1: Theoretical Understanding of Inverted Indexes
ILO2: Fast Top-k Retrieval with Dynamic Pruning
ILO3: Current Trends and Research Directions

ILO4: Experimenting with PISA

ILOS: Integrating PISA into Modern Applications

IR Experimentation

APACHE

SLUCENE

m» elasticsearch
i

”

Solr =

History and Origins of PISA

The PISA engine started off as the Data Structures for Inverted
Indexes (ds2i) project in 2014.

It formed the basis of “Partitioned Elias Fano Indexes” by Ottaviano
and Venturini, which won the SIGIR 2014 best paper award, as well
as “Optimal Space-Time Tradeoffs for Inverted Indexes” by
Ottaviano, Tonellotto, and Venturini, WSDM 2015.

In 2017, “Faster BlockMax WAND with variable-sized blocks” was
published at SIGIR by Mallia, Ottaviano, Porciani, Tonellotto, and
Venturini. At this point, PISA was forked from ds2i.

The PISA Engine E

An efficient, extensible, modern search engine. PISA

o Written in C++17

e |n-memory retrieval

e Low-level optimization out-of-the-box: CPU intrinsics, branch
prediction hinting, ...

e Extensible: Plug and play parsing, stemming, compression, query
processing

e Indexing, parsing, sharding capabilities

e Free, open-source permissive license

Where PISA Shines E

Ridiculously fast top-k query processing PISA
Extensible experimentation with easy access to state-of-art methods
Small but active group of maintainers

Interfaces well with other experimental IR systems

Where PISA Pales E

Primary focus is on bag-of-words, top-k retrieval PISA
No support for positional indexing, fields, ...

Not so user friendly due to high complexity of the codebase
> See: for a
higher-level Python API

Terri@rffa

PISA’s role in the IR Ecosystem

a TheRealMasonMac - 4y ago

In the benchmarks, how is Pisa so fast? Sacrificial rituals?

© ¢ 3% O Reply

e PISA, because it happily trades anything in favor of faster search, so
it sets a good north star in terms of search performance.

https://www.reddit.com/r/rust/comments/nuljc7/tantivy_vO15_released_now_backed_by_quickwit_inc/
https://jpountz.github.io/2025/05/12/analysis-of-Search-Benchmark-the-Game.htmi

Search Benchmark, the Game

Collection type

TOP_1000

Type of Query

union

Query » tantivy-0.22 > lucene-10.2.0 » lucene-10.2.0-bp > pisa-0.8.2

3241

L .
fleaks S
eis

702 ps 1,429 ps 1,104 ps 121 ps

griffith observatory s e e
1 docs 1docs 1 docs 1 docs
733 s 547 ps 80 s

bowel obstruction e RS
1 docs 1 docs 1 docs

Search Benchmark - Average query latency in ps
tantivy 0.16 [l pisa0.82 [lucene8.10.1 [l bleve 0.8

1,22
651
rori Al /_
75,445

TOP 10 COUNT mm— 2541

I 10,522
77,825

Search Benchmark, the Game

Collection type

TOP_1000

Type of Query

union

Query » tantivy-0.22 > lucene-10.2.0 » lucene-10.2.0-bp > pisa-0.8.2

=
__ RS

702 ps 1,429 ps 1,104 ps 121 ps

griffith observatory s e e
1 docs 1docs 1 docs 1 docs
296 ps 733 s 547 ps 80 s

bowel obstruction +270.0 % +816.3% +583.8 %
1 docs 1docs 1 docs 1 docs

Search Benchmark - Average query latency in ps
[tantivy0.16 [l pisa0.82 [lucene8.10.1 [l bleve 0.8

I » 651
TOP 10 3,071
75,445
e 2541
T O 10 C O U N T 10,522
77,825

Session l: Indexing and Retrieval

Setup

Links and Downloads

For the practical component, we will need to grab some data, and
have some instructions ready.

Prerequisite: You have your own machine with Docker installed.
| will step through on my own machine if you don't have access.

You can also experiment with the tutorial at any time (later).

Tutorial: https://shorturl.at/VExpG

Aka: https://github.com/pisa-engine/pisa/blob/main/test/docker/tutorial/instructions.md

Please at least initiate the data download, and the docker image download.

https://shorturl.at/VExpG
https://github.com/pisa-engine/pisa/blob/main/test/docker/tutorial/instructions.md

Links and Downloads

Efficient In-Memory Inverted Indexes

Prerequisites

Download input data

First, download the data package. It is around 1.5GB, and about 5GB once decompressed.

Move it somewhere on your machine, and unpack it. Make a note of the full path as we will need it shortly.

mkdir -p "SHOME/sigir25-input-data"

mv sigir25.zip $HOME/sigir25-input-data
cd SHOME/sigir25-input-data

unzip sigir25.zip

Download container image

Next, download the image. Then, load it locally:

docker load < pisa-tutorial.tar.gz

You can also use any compatible container management tool, such as podman .

Session l: Indexing and Retrieval

Theory

Revision: Text Indexing

Document 0

search is cool

Document 1

search is fun

Document 2

search is fun
for everyone

Revision: Text Indexing

Document 0

Lexicon Postings Lists
search is cool

Document 1

search is fun

Document 2

search is fun
for everyone

Revision: Text Indexing

Document 0

Lexicon Postings Lists
search is cool

Document 1

search is fun

Document 2

search is fun
for everyone

Revision: Text Indexing

Document 0

Lexicon Postings Lists

search is cool
search | |

Document 1

search is fun

Document 2

search is fun
for everyone

Revision: Text Indexing

Document 0

Lexicon Postings Lists

search is cool [search [+

Document 1

search is fun

Document 2

search is fun
for everyone

Revision: Text Indexing

Document 0

Lexicon Postings Lists

search is cool =

Document 1

search is fun

Document 2

search is fun
for everyone

Revision: Text Indexing

Document 0

Lexicon Postings Lists

search is-cool [search [~

Document 1

search is fun

Document 2

search is fun
for everyone

Revision: Text Indexing

Document 0

Lexicon Postings Lists

search is cool =

Document 1

search is fun

Document 2

search is fun
for everyone

Revision: Text Indexing

Document 0

Lexicon Postings Lists
search is cool
search |—>
cool

Document 1

search is fun

Document 2

search is fun
for everyone

Revision: Text Indexing

Document 0

Lexicon Postings Lists

search is cool
search [«+—> [0 1

cool |s+—>» 0] 1

Document 1

search is fun

Document 2

search is fun
for everyone

Revision: Text Indexing

Document 0

Lexicon Postings Lists

search is cool
search [«+—> [0 1

cool [e+—> |01

Document 1

search is fun

Document 2

search is fun
for everyone

Revision: Text Indexing

Document 0

Lexicon Postings Lists

search is cool
search [«+—> [0 1

cool [e+—> |01

Document 1

search is fun

Document 2

search is fun
for everyone

Revision: Text Indexing

Document 0

Lexicon Postings Lists

search is cool
search [«+—> [0 1

cool [e+—> |01

Document 1

search is fun

Document 2

search is fun
for everyone

Revision: Text Indexing

Document 0

Lexicon Postings Lists

search is cool search [+—— [o]1][1]1]

cool [e+—> |01

Document 1

search is fun

Document 2

search is fun
for everyone

Revision: Text Indexing

Document 0

Lexicon Postings Lists

search is cool search [+—— [o]1][1]1]

cool [e+—> |01

Document 1

search is fun

Document 2

search is fun
for everyone

Revision: Text Indexing

Document 0

Lexicon Postings Lists

search is cool

search [«+— o[1] 1[1]{2] 1]
cool |~+—> |01
Document 1 fun ‘e l 2| 1 |
everyone|~—>» |2 1

search is fun

Document 2

search is fun
for everyone

Revision: Text Indexing

Document 0

Lexicon Postings Lists

search is cool

search [«+— o[1] 1[1]{2] 1]
cool |~+—> |01
Document 1 fun ‘e l 2| 1 |
everyone|~—>» |2 1

search is fun

Document 2

search is fun
for everyone

Revision: Inverted Indexes

Lexicon Postings Lists
search » (O] T([1]1]2]]1
cool > 0] 1
fun » |1 1]2]1
everyone| > [2] 1

Revision: Inverted Indexes

Lexicon Postings Lists
=1 =iy ey
search - 10 1|1E1E\2!1
cool » JOE T 1 o1
fun - (1faafa
everyone| > | 2 1: R

Document Identifiers

Revision: Inverted Indexes

Lexicon Postings Lists
search » (O] T([1]1]2]]1
cool > 0] 1
fun » |1 1]2]1
everyone| > [2] 1

Revision: Inverted Indexes

exicon

search

cool

fun

»

»

cveryone| -

Postings Lists

Term Frequencies

— =1 =
ol 11 1] 2]
ehaen
1 2f1f 1o
20 D

Revision: Inverted Indexes

Lexicon Postings Lists
search » (O] T([1]1]2]]1
cool > 0] 1
fun » |1 1]2]1
everyone| > [2] 1

Revision: Inverted Indexes

exicon

search

Postings Lists

cool

fun

cveryone| -

- [o[1][1]1][2] 1

- o] 1]____

- (1)1 2] 1]
—— |

- 2] 1

A single posting is a document identifier
and term frequency pair. Document 2
contains the word “fun” once.

Revision: Inverted Indexes

Lexicon Postings Lists
search » (O] T([1]1]2]]1
cool > 0] 1
fun » |1 1]2]1
everyone| > [2] 1

Revision: Inverted Indexes

Lexicon Postings Lists
search |- -~ {0l 11][2]7
cool |- > 1:0__ 10”7
fun |- - {1 1)2]1
cveryone| - > EJ -

Within a given postings list,
document identifiers are
strictly increasing.

Compressed Postings

Storing Postings in Practice

DoclIDs

Frequencies

12

14

LT

29

30

55

59

86| -

Compressed Postings

Storing Postings in Practice

DoclIDs

Frequencies

12

14

LT

29

30

55

59

86| -

Compressed Postings

Storing Postings in Practice

DoclIDs

Frequencies

12(14127(29130(55159(86] -
14-12 = 2
314|311 1]15]2]3

Compressed Postings

Storing Postings in Practice

DoclIDs

Frequencies

12] 2 [27]29[30]55[59]386] -
14-12 =2
slals]1[1]s5]2]3

Compressed Postings

Storing Postings in Practice

DoclIDs

Frequencies

12 2 127(29]130(55159(86] -
14
314|311 1]15]2]3

Compressed Postings

Storing Postings in Practice

DoclIDs

Frequencies

121 2 127]29(30(55[59|86] -
14
34|31 1]5]|2]3

Compressed Postings

Storing Postings in Practice

DoclIDs

Frequencies

12 2 127(29]130(55159(86] -
27-14 =13
314|311 1]15]2]3

Compressed Postings

Storing Postings in Practice

DoclIDs

Frequencies

12

2

13

2

2

25

4

27

Compressed Postings

Storing Postings in Practice

DoclIDs

Frequencies

12

13

2

2

25

4

27

This is called delta coding and
IS a common pre-processing
step used to make integer
compression codecs better.

While out of scope for today,
integer codecs are typically
more effective for smaller
integers.

Compressed Postings

Storing Postings in Practice

DoclIDs

Frequencies

12

2

13

2

2

25

4

27

Compressed Postings

Storing Postings in Practice

DoclIDs

Frequencies

Prefix-Sum Problem

Storing Postings in Practice

DoclIDs

Frequencies

Prefix-Sum Problem

But what if | want to access the
nth document identifier?

Storing Postings in Practice

DoclIDs

Frequencies

Prefix-Sum Problem

But what if | want to access the
nth document identifier?

Storing Postings in Practice

Sum these deltas up

DoclIDs

Frequencies

Prefix-Sum Problem

But what if | want to access the
nth document identifier?

Storing Postings in Practice

DoclIDs

Frequencies

Prefix-Sum Problem

But what if | want to access the
nth document identifier?

Storing Postings in Practice

DoctDs ([T T I (T -~

Break into fixed-sized blocks

Frequencies

Prefix-Sum Problem

But what if | want to access the
nth document identifier?

Storing Postings in Practice

DoctDs ([T T I (T -~

Break into fixed-sized blocks

Frequencies

Store the first identifier of
each block directly - then
prefix sums are only required
within each block!

Prefix-Sum Problem

But what if | want to access the
nth document identifier?

Storing Postings in Practice

DoctDs ([T T I (T -~

Break into fixed-sized blocks

Frequencies

Store the first identifier of
each block directly - then
prefix sums are only required
within each block!

Block-Based Indexes

Storing Postings in Practice

DoctDs ([T T I (T -~

Break into fixed-sized blocks

Frequencies [T AN OO QTOANND

Block-Based Indexes

Storing Postings in Practice

DoctDs ([T T I (T -~

Compress each block individually

Frequencies. [OO OO

Block-Based Indexes

Storing Postings in Practice

DoctDs ([T T I (T -~

Interleave for better memory locality

Frequencies [T AN OO QTOANND

Block-Based Indexes

Storing Postings in Practice

DoctDs ([T T I (T -~

Interleave for better memory locality

Frequencies. [OO OO

In-memory (or on-disk) postings

Postings List Compression

Table 1. Timeline of techniques.

1949

Shannon-Fano [32, 93]

1952

Huffman [43]

2005

Simple-9, Relative-10, and Carryover-12 [3];
RBUC [60]

1963

Arithmetic [1]"

2006

PForDelta [114]; BASC [61]

1966

Golomb [40]

2008

Simple-16 [112]; Tournament [100]

1971

Elias-Fano [30, 33]; Rice [87]

1972

Variable-Byte and Nibble [101]

2009

ANS [27]; Varint-GB [23]; Opt-PFor [111]

2010

Simple8b [4]; VSE [96]; SIMD-Gamma [91]

1975

Gamma and Delta [31]

2011

Varint-G8IU [97]; Parallel-PFor [5]

1978

Exponential Golomb [99]

2013

DAC [12]; Quasi-Succinct [107]

1985

Fibonacci-based [6, 37]

1986

Hierarchical bit-vectors [35]

2014

partitioned Elias-Fano [73]; QMX [103];
Roaring [15, 51, 53]

1988

Based on Front Coding [16]

1996

Interpolative [65, 66]

2015

BP32, SIMD-BP128, and SIMD-FastPFor [50];
Masked-VByte [84]

1998

Frame-of-Reference (For) [39];
modified Rice [2]

2017

clustered Elias-Fano [80]

2003

SC-dense [11]

2018

Stream-VByte [52]; ANS-based [63, 64];
Opt-VByte [83]; SIMD-Delta [104];
general-purpose compression libraries [77];

2004

Zeta [8, 9]

2019

DINT [79]; Slicing [78]

Techniques for Inverted Index Compression - Pibiri and Venturini, ACM Computing Surveys, 2020.

Postings List Compression

46 - 289 - P Key message: It is almost
41 - 260 - 4 Opt-vByte always a trade-off. Smaller
37 - 231 - B BIC
- % 20;_ & ¢ 5 codecs take longer to
< @ < Rice d b
2a- % 8 1 . encode/decode, but save
S 23 - g 144 - ® DINT space.
& 18 - 2 115 - ¥V Opt-PFor
E - 83@? T 86- A Simplel6
(@] ® QMX 7] ” 0
g 57 - S o The “right” choice depends
4- * rS = * 4 (% Slicing on where you wish to
A N B N B S operate on the Pareto
5 6 7 8 9 10 5 6 7 8 9 10 .
bits/integer bits/integer frontler.

Fig. 7. Space/time trade-off curves for the ClueWeb09 dataset.

Techniques for Inverted Index Compression - Pibiri and Venturini, ACM Computing Surveys, 2020.

Revision: Basic Querying

Now we have our inverted index, how can we query it?

Lots of flavours of query...

Let’s start by revising the simple Boolean conjunction

We'll then move on to ranked disjunctions, also known as

top-k retrieval.

Important to note that matching semantics are separate

from document ranking.

o Thatis, we can decide to only match documents
containing all query terms, but we might also decide
to rank them on the way through! This would be a
ranked conjunction.

Revision: Boolean Conjunctions

best | 1211412729130 [55(59 (86

coffee | 8 | 11| 12|55 | 74

melbourne | 2 | 12]30|45|51 |55

Revision: Boolean Conjunctions

best [12] 14]27]29]30]55]59] 86

coffee -11 12 (55| 74

melbourne [[2] 12]30[45]51]55

Revision: Boolean Conjunctions

best CM 2712913015559 86

coffee -11 12 (55| 74

melbourne [[2] 12]30[45]51]55

Revision: Boolean Conjunctions

best :14 2712913015559 86

coffee -11 12 (55| 74

melbourne [[2] 12]30[45]51]55

Revision: Boolean Conjunctions

best :14 2712913015559 86

coffee :-12 55174

melbourne [[2] 12]30[45]51]55

Revision: Boolean Conjunctions

30555986

74

melbourne [[2] 12]30]45]51]55

Revision: Boolean Conjunctions

30555986

74

melbourne [[2] 12]30]45]51]55

Revision: Boolean Conjunctions

30555986

74

melbourne [[2] 12]30]45]51]55

Revision: Boolean Conjunctions

30555986

74

melbourne (820 12[30]45]51]55

Revision: Boolean Conjunctions

best :14 305559 86

74

melbourne 51|55

Revision: Boolean Conjunctions

best CM 305559 86

74

melbourne 51|55

Revision: Boolean Conjunctions

best CM 305559 86

74

melbourne 51|55

Revision: Boolean Conjunctions

best [12] 14 30[55][59] 86
coffee 74
melbourne 51|55

Revision: Boolean Conjunctions

best [12]14]27]29]30]55]59] 86

coffee | 8 11-55 74

melbourne Z-SO 45151155

Revision: Boolean Conjunctions

best | 12]14]27]29]30]55]59] 86

coffee | 8 11-55 74

melbourne Z-SO 45151155

Revision: Boolean Conjunctions

best | 12]14]27]29]30]55]59] 86

coffee | 8 11-55 74

melbourne Z-SO 45151155

Revision: Boolean Conjunctions

best | 12]14]27]29]30]55]59] 86
coffee | 8 | 11 12.2
melbourne Z-SO 45151155

Revision: Boolean Conjunctions

best | 12]14]27]29]30]55]59] 86
coffee | 8 | 11 12.2
melbourne Z-SO 45151155

Revision: Boolean Conjunctions

best | 12]14]27]29]30]55]59] 86
coffee | 8 [11 12E
melbourne | 2 [12]30]45]51]55

Revision: Boolean Conjunctions

best | 12]14]27]29]30]55]59] 86
coffee | 8 [11 12E

mielboiirie WE 12-45 =il |l 55

Revision: Boolean Conjunctions

best | 12]14]27]29]30]55]59] 86
coffee | 8 [11 12E

melbourne B 12-45 =il |l 55

Revision: Boolean Conjunctions

best | 12]14]27]29]30]55]59] 86
coffee | 8 [11 12‘2

melbourne B 12-45 =il |l 55

Revision: Boolean Conjunctions

best | 12]14]27]29]30]55]59] 86
coffee | 8 [11 12‘2

mielboiirie WE 12-45 =il |l 55

Revision: Boolean Conjunctions

best | 12]14]27]29]30]55]59] 86
coffee | 8 [11 12‘2

melbourne IR 30-51 =5

Revision: Boolean Conjunctions

best | 12]14]27]29]30]55]59] 86

coffee | 8 | 11 12‘2
melbourne | 2 [12| 30 45E

Revision: Boolean Conjunctions

best | 12]14]27]29]30]55]59] 86
coffee | 8 [11 12‘2

melbourne IEEEAREEE 51-

Revision: Boolean Conjunctions

best | 12]14]27]29]30]55]59] 86

coffee | 8 | 11 12‘2
melbourne | 2 | 12|30 | 45 51‘

Revision: Boolean Conjunctions

best | 12]14]27]29]30]55]59] 86
coffee | 8 | 11 12‘2

melbourne | 2 | 12|30 | 45 51‘

Revision: Boolean Conjunctions

best [12]14]27]29]30]55]59] 86
coffee | 8 | 11 12‘2

melbourne | 2 | 12|30 | 45 51‘

Revision: Boolean Conjunctions

best |[12]14]27]29]30]55]59] 86

coffee | 8 | 11 12‘2

melbourne | 2 | 12|30 | 45 51‘

Revision: Boolean Conjunctions

best [12]14 27-30 55|59 86

coffee | 8 | 11 12‘2

melbourne | 2 | 12|30 | 45 51‘

Revision: Boolean Conjunctions

best [12]14]27 29-55 59 | 86

coffee | 8 | 11 12‘2

melbourne | 2 | 12|30 | 45 51‘

Revision: Boolean Conjunctions

best [12]14]27]29 30-59 86

coffee | 8 | 11 12‘2

melbourne | 2 | 12|30 | 45 51‘

Revision: Boolean Conjunctions

best | 121412729 30§59 36

coffee | 8 | 11 12‘2

melbourne | 2 | 12|30 | 45 51‘

Revision: Boolean Conjunctions

best [12]14]27]29 30-59 86

coffee | 8 | 11 12E

melbourne | 2 | 12|30 | 45 51-

Revision: Boolean Conjunctions

And so on until we run out of postings...

best [12]14]27]29 30-59 86

coffee | 8 | 11 12E

melbourne | 2 | 12|30 | 45 51-

Revision: Boolean Conjunctions

best [12]14]27]29 30-59 36

coffee | 8 | 11 12-2

melbourne | 2 | 12| 30| 45 51-

Hmmm... What about ranking?
Consider our old, faithful friend, BM25 [ATIRE variant]:

2 teq 108 (dﬂf’t) | kl.(1—bf;-+<lz£td>>+tftd

avg

Hmmm... What about ranking?
Consider our old, faithful friend, BM25 [ATIRE variant]:

Number of documents in the collection Number of times t appears in “this” document
For each query term...
Z log (ﬂ) , (k1+1)-tfta
15 = d L
1 Tt) ey (1—btb [Zd)) 4ts,,
Lavg

Number of docs containing term t
Length of “this” document / Average

document length

Hmmm... What about ranking?
Consider our old, faithful friend, BM25 [ATIRE variant]:

ZtEq

log (dft)

(k1+1)-tfeq

k1-<1—b+b-

(

L4
Lavg

Nz

Hmmm... What about ranking?
Where is this stuff stored?

Number of documents in the collection Number of times t appears in “this” document
For each query term...
Z log (ﬂ) , (k1+1)-tfta
15 = d L
1) ey (1—b4b- (29—) Y +t1,4
Lavg

Number of docs containing term t
Length of “this” document / Average

document length

Hmmm... What about ranking?
Where is this stuff stored?

Number of documents in the collection Number of times t appears in “this” document
For each query term...
Z 10g (N) , (k1+1)-tfta
15 = d L
1 Tt) ey (1—btb [Zd)) 4ts,,
Lavg

Number of docs containing term t
Length of “this” document / Average

document length

Lexicon Postings Lists

Siirglh " 8 1 Lf)2] 1] + Array with (normalized)

fun |1—— [1[1[2]7] document lengths
everyone|+—> | 2] 1

Hmmm... What about ranking?
Consider our old, faithful friend, BM25 [ATIRE variant]:

k1 (1 b+b

ztEq log (dft) (k1 ‘|‘1)25ftd
| 1— (d)_j+tftd

Lavg

Note how the “query dependent” aspect is just which terms

get used...

Hmmm... What about ranking?
Consider our old, faithful friend, BM25 [ATIRE variant]:

e
N (k1+1)-tf
>, log (E) . L) ifig
(e (25

Note how the “query dependent” aspect is just which terms
get used...

So, we can pre-compute the document/term impacts!

Hmmm... What about ranking?
Consider our old, faithful friend, BM25 [ATIRE variant]:

f—
ZtquId,t :
S

Note how the “query dependent” aspect is just which terms
get used...
So, we can pre-compute the document/term impacts!

Hmmm... What about ranking?
Consider our old, faithful friend, BM25 [ATIRE variant]:

Lexicon Postings Lists

1111121

L 5 0

search

f— o
2teq iy ! co
_

EEE—

fun 211

everyone

I A O

—] — | —] —

0
I
2

EEEE—

Note how the “query dependent” aspect is just which terms
get used...

So, we can pre-compute the document/term impacts! And
store them directly in the index!

Hmmm... What about ranking?

Quantized Scoring!

= S
ZtEq 'Id,t I
\ __I

Lexicon

search

cool

fun

I A O

—>

EEE—

e

everyone

EEEE—

Postings Lists

1 &

2|6l

2 [

0
0
1
2

Note how the “query dependent” aspect is just which terms

get used...

So, we can pre-compute the document/term impacts! And
Store them direCtly in the indeX! [After global normalization]

Quantized Scorers

For the remainder of this tutorial, we will assume “sum of
Impact” scoring

Lexicon Postings Lists
=~ search |-+— |0 1 n 2 ﬂ
E . II I cool [+— |0
Eq‘ dt | fun [+ 1 [EN2]D0
- everyone|-—> | 2

Instead of storing term frequencies, our postings lists will
store quantized impacts.

Top-k Retrieval

Instead of relying on conjunctive matching, let’s trust our
ranking function and allow disjunctive matching.

Naive algorithm: Scan across all postings lists maintaining a
min-heap of the k best “so far” documents. For each
document, compute its score, and add it to the heap if it
beats the current top element.

At the end of traversal, the heap contains the top-k docs.

Top-k Retrieval

Term

cafe

latte

Postings Lists

v

233]2)|34| 1)46| 3|54 199
3 |55] 3|63| 3|/66] 3|99

.. [34

Top-k documents (min-heap) (k = 2)

11

4

20| 6

<— Threshold

Top-k Retrieval

Term

cafe

latte

Postings Lists

v

- [B2

233]2)|34| 1)46| 3|54 199
3 |55] 3|63| 3|/66] 3|99

.. [34

Top-k documents (min-heap) (k = 2)

11

4

20| 6

<— Threshold

Top-k Retrieval

Term

cafe

latte

v

Postings Lists

- [B2

2 (33| 2|[34| 1 (46| 3 ||54 199
3 |55] 3|63| 3|/66] 3|99

.. [34

Top-k documents (min-heap) (k = 2)

11

4

20| 6

<— Threshold

Top-k Retrieval

Term

cafe

latte

v

Postings Lists

- [B2

2 (33| 2|[34| 1 (46| 3 ||54 199
3 |55] 3|63| 3|/66] 3|99

.. [34

Top-k documents (min-heap) (k = 2)

11

4

20| 6

<— Threshold

32[2

Top-k Retrieval

Term

cafe

latte

v

Postings Lists

233]2)|34| 1)46| 3|54 199
3 |55] 3|63| 3|/66] 3|99

.. [34

Top-k documents (min-heap) (k = 2)

11

4

20| 6

<— Threshold

Top-k Retrieval

Term

cafe

latte

v

Postings Lists

2 33| 2|34| 1)46| 3|54 199
3 |55] 3|63| 3|/66] 3|99

.. [34

Top-k documents (min-heap) (k = 2)

11

4

20| 6

<— Threshold

332

Top-k Retrieval

Term

cafe

latte

v

Postings Lists

2 33| 2|34| 1)46| 3|54 199
3 |55] 3|63| 3|/66] 3|99

.. [34

Top-k documents (min-heap) (k = 2)

11

4

20| 6

<— Threshold

Top-k Retrieval

Term

cafe

latte

Postings Lists

v

2 33| 2|34| 1)46| 3|54 199
3 |55] 3|63| 3|/66] 3|99

.. [34

Top-k documents (min-heap) (k = 2)

11

4

20| 6

<— Threshold

Top-k Retrieval

Term

cafe

latte

Postings Lists

v

233]2|34| 146|354 199
31[55] 3 63| 3|66] 399

. |34

Top-k documents (min-heap) (k = 2)

11

4

20| 6

<— Threshold

Top-k Retrieval

Term

cafe

latte

Postings Lists

v

233]2|34| 146|354 199
31[55] 3 63| 3|66] 399

. |34

Top-k documents (min-heap) (k = 2)

11

4

20| 6

<— Threshold

34] 4

Top-k Retrieval

Term

cafe

latte

Postings Lists

v

233]2|34| 1)46| 3|54 199
31[55] 3 63| 3|66] 399

.. [34

Top-k documents (min-heap) (k = 2)

11

4

20| 6

<— Threshold

Top-k Retrieval

Term

cafe

latte

Postings Lists

v

233]2|34| 1)46| 3|54 199
31[55] 3 63| 3|66] 399

.. [34

Top-k documents (min-heap) (k = 2)

11

4

20| 6

<— Threshold

Top-k Retrieval

Term

cafe

latte

Postings Lists

v

.. [34

233]2|34| 1)46| 3|54 199
31[55] 3 63| 3|66] 399

Top-k documents (min-heap) (k = 2)

11

4

20| 6

<— Threshold

Top-k Retrieval

e Naive algorithm:
o Scores every single posting!
o Which means we decompress every block of
document identifiers and impacts.
o But guaranteed to return the rank-safe top-k
documents.

Dynamic Pruning

What if we didn't need to score everything in order to get the
rank-safe top-k results?

Basic Ingredients

e Our ranking function must be additive;

e \We must pre-compute and store the maximum impact
that each postings list contains (offline);

e Ourindex must support efficient random access.

Dynamic Pruning

What if we didn't need to score everything in order to get the
rank-safe top-k results?

Intuition

e Use the top element of the heap as a threshold;

e [Estimate the score of each document by summing up the
list-wise upper-bound scores;

e Only score documents with an estimated score
exceeding the heap threshold - bypass otherwise.

Dynamic Pruning: Index Time

e During indexing, we must pre-compute the list-wise
upper-bound score. This is denoted U, for term .

Lexicon Postings Lists

—— [EHL B2

0
— 1 EX 2N
2

search
cool
fun
everyone

I I A I A

Dynamic Pruning: Index Time

e During indexing, we must pre-compute the list-wise
upper-bound score. This is denoted U, for term .

Lexicon Postings Lists Ut
search |+—> |0 B2l 4
cool [-—— |0 7
fun > | 1 2 n 4
everyone|——> | 2 7

Dynamic Pruning: Query Time
Term Postings Lists

v

cafe .- |32[233] 234| 1 46| 3||54| 1|---|99] 1

v

latte ... |34| 3|55] 3 |63| 3 66| 3 99| 3

Top-k documents (min-heap) (k = 2)

11l 4| <— Threshold

20| 6

Dynamic Pruning: Query Time

Term

cafe

latte

Postings Lists

132 21[33] 2 (34| 1|46| 3|54| 1|---|99] 1

- |34| 3|55| 3 ||63| 3 ||66] 399| 3

v

v

Top-k documents (min-heap) (k = 2)

11

4

Z

20| 6

<— Threshold Use the minimum score

inthe heap asa
threshold

Dynamic Pruning: Walkthrough

Dynamic Pruning: Walkthrough

Term U; Postings Lists

v

new 3 - 132] 2(33] 2|34| 1|46] 3|[54| 1|---|99] 1
farm 5 - 1341 399 3|

Top-k documents (min-heap) (k = 2)

11 4

20| 6

Dynamic Pruning: Walkthrough

Term @ Postings Lists

v

new@ . [32[233] 2134] 1 [46] 3][54] 1]--- [99] 1

Y

farm@ ... 134! 3199] 3|-..

Top-k documents (min-heap) (k = 2)

11 4

20| 6

Dynamic Pruning: Walkthrough

Term @ Postings Lists

v

new@ . [321 21331 21[3a] 1 [[a6] 3 |[54] 1]--- [99] 1

v

farm@ ... 134| 3199| 3|---

Dynamic Pruning: Walkthrough

Term U; Postings Lists

v

new 3 - 132] 2(33] 2|34| 1|46] 3|[54| 1|---|99] 1
farm 5 - 1341 399 3|

Top-k documents (min-heap) (k = 2)

11 4

20| 6

Dynamic Pruning: Walkthrough

Term U; Postings Lists

new 3 - 132| 2 (133] 2 ||34| 1]46| 3|(54]| 1|---199]| 1

farm 5 - 1341 3199 3 |-

Dynamic Pruning: Walkthrough

Term U; Postings Lists

new 3 - 132] 21|(33] 2 |34| 1||46] 3|54 1|---|99] 1

farm 5 ... 134| 3199| 3|---

Dynamic Pruning: Walkthrough

Term U; Postings Lists

v

new 3 - 132] 2(33] 2|34| 1|46] 3|[54| 1|---|99] 1
farm 5 - 1341 399 3|

Top-k documents (min-heap) (k = 2)

11 4

20| 6

Dynamic Pruning: Walkthrough

Term U; Postings Lists

0

new 3 - 132] 2(33] 2|34| 1|46] 3|[54| 1|---|99] 1
farm 5 - 1341 399 3]

Top-k documents (min-heap) (k = 2)

11 4

20| 6

Dynamic Pruning: Walkthrough

Term U; Postings Lists

0

new 3 - 1321 2 1133] 2(134| 1||46| 3|54| 1|---[99]| 1
farm 5 .- 134| 3199| 3|---

Top-k documents (min-heap) (k = 2)

Dynamic Pruning: Walkthrough

Term U; Postings Lists

v

new 3 - 132] 2(33] 2|34| 1|46] 3|[54| 1|---|99] 1
farm 5 - 1341 399 3|

Top-k documents (min-heap) (k = 2)

11 4

20| 6

Dynamic Pruning: Walkthrough

Term U; Postings Lists

v

new 3 - 132] 2(33] 2|34| 1|46] 3|[54| 1|---|99] 1
farm 5 - 1341 399 3|

Top-k documents (min-heap) (k = 2)

111 4| <— Threshold

20| 6

Dynamic Pruning: Walkthrough

Term U; Postings Lists

new 3 - 132] 2(33] 2|34| 1|46] 3|[54| 1|---|99] 1
farm 5 - 1341 399 3|

Top-k documents (min-heap) (k = 2)

11l 4| <— Threshold

20| 6

Dynamic Pruning: Walkthrough

Term U; Postings Lists

—————————————————

farm 5

Top-k documents (min-heap) (k = 2)

!; <— Threshold

Dynamic Pruning: Walkthrough

Term U; Postings Lists

T e T T T e T e e e
! v |
'new 3 -..|32]|2(33|2134| 1 (46| 3|[54] 1 991!
farm 5 ... |34] 3199] 31---

Top-k documents (min-heap) (k = 2

: <— Threshold

Dynamic Pruning: Walkthrough

Term U; Postings Lists

new 3 - 132] 2(33] 2|34| 1|46] 3|[54| 1|---|99] 1
farm 5 - 1341 399 3|

Top-k documents (min-heap) (k = 2)

11l 4| <— Threshold

20| 6

Dynamic Pruning: Walkthrough

Term U; Postings Lists

new 3 32| 233] 234] 1]46] 3]|54] 1|+ |99] 1
; i |
| farm 5 34| 3]99] 3 |

Top-k documents (min-heap) (k = 2)

11l 4| <— Threshold

20| 6

Dynamic Pruning: Walkthrough

Term U; Postings Lists

new 3 -+ 1321 21133| 21134 1|46| 3 |54| 1 99| 1
I o [e e e e e ey e e e e s e
| v
farm 5 . 34| 3199 3

Top-k documents (min-heap) (k = 2)

: <— Threshold

Dynamic Pruning: Walkthrough

Term U; Postings Lists

new 3 32| 233] 234] 1]46] 3]|54] 1|+ |99] 1
; i |
| farm 5 34| 3]99] 3 |

Top-k documents (min-heap) (k = 2)

11l 4| <— Threshold

20| 6

Dynamic Pruning: Walkthrough

Term U; Postings Lists

new 3 - 132] 2(33] 2|34| 1|46] 3|[54| 1|---|99] 1
farm 5 - 1341 399 3|

Top-k documents (min-heap) (k = 2)

11l 4| <— Threshold

20| 6

Dynamic Pruning: Walkthrough

Term U; Postings Lists

new 3 32| 233] 2|34]1]46] 3]54] 1] |99] 1
farm 5 ... [34]18][99] 3] -

Top-k documents (min-heap) (k = 2)

11l 4| <— Threshold

20| 6

Dynamic Pruning: Walkthrough

Term U; Postings Lists

new 3 - 132] 2(33] 2|34| 1|46] 3|[54| 1|---|99] 1
farm 5 - 1341 399 3|

Top-k documents (min-heap) (k = 2)

11l 4| <— Threshold

20| 6

Dynamic Pruning: Walkthrough

Term U; Postings Lists

new 3 - 132] 2(33] 2|34| 1|46] 3|[54| 1|---|99] 1
farm 5 - 1341 399 3|

Top-k documents (min-heap) (k = 2)

11l 4| <— Threshold

20| 6

Dynamic Pruning: Walkthrough

Term U; Postings Lists

Top-k documents (min-heap) (k = 2)

11l 4| <— Threshold

20| 6

Dynamic Pruning: Walkthrough

Term U; Postings Lists

new 3 32| 233] 2 34| 146| 3|54] 1]---|99] 1
; ! s
| farm 5 134/ 399 3 i

Top-k documents (min-heap) (k = 2)

11l 4| <— Threshold

20| 6

Dynamic Pruning: Walkthrough

Term U; Postings Lists

new 3 - 132] 2(33] 2|34| 1|46] 3|[54| 1|---|99] 1
farm 5 - 1341 399 3|

Top-k documents (min-heap) (k = 2)

11l 4| <— Threshold

20| 6

Dynamic Pruning: Walkthrough

Term U; Postings Lists

new 3 -+ 1321 2 33| 2 (134| 1(46| 3 (54| 1|---199| 1
farm 5 ... [3a] 3199 3]... 3 < Threshold: Skip

Top-k documents (min-heap) (k = 2)

11l 4| <— Threshold

20| 6

Dynamic Pruning: Walkthrough

Term U; Postings Lists

new 3 - 132] 2(33] 2|34| 1|46] 3|[54| 1|---|99] 1
farm 5 - 1341 399 3|

Top-k documents (min-heap) (k = 2)

11l 4| <— Threshold

20| 6

Dynamic Pruning: Walkthrough

Term U; Postings Lists

new 3 32| 233] 234] 1]46] 3]|54] 1|+ |99] 1
; i |
| farm 5 34| 3]99] 3 |

Top-k documents (min-heap) (k = 2)

11l 4| <— Threshold

20| 6

Dynamic Pruning: Walkthrough

Term U; Postings Lists

new 3 32| 233] 234] 1]46] 3]|54] 1|+ |99] 1
; i |
| farm 5 34| 3]99] 3 |

Top-k documents (min-heap) (k = 2) 3 +5 > Threshold
Score 99

11l 4| <— Threshold

20| 6

Dynamic Pruning: Walkthrough

Term U; Postings Lists

new 3 - 132] 2(33] 2|34| 1|46] 3|[54| 1|---|99] 1
farm 5 - 1341 399 3|

Top-k documents (min-heap) (k = 2) 3 +5 > Threshold
Score 99

11l 4| <— Threshold

20| 6

Dynamic Pruning: Walkthrough

Term U; Postings Lists

i Skipped ¢ i
I new 3 ---322332341463541-.-991i
farm 5 ... 134! 3199] 31-..

Top-k documents (min-heap) (k = 2) 3 +5 > Threshold
Score 99

11l 4| <— Threshold

20| 6

Dynamic Pruning: Walkthrough

Term U; Postings Lists How does the skipping work?
i Skipped ¢ i
inew 3 .. |32/2]33] 234 146|354 1|--[99] 1]
farm 5 - 134] 3/99] 3 |-

Top-k documents (min-heap) (k = 2) 3 +5 > Threshold
Score 99

11l 4| <— Threshold

20| 6

Next-GEQ Operator

Dynamic pruning algorithms depend on the efficient
implementation of the next_geq () operator.

next_geq(n) forwardsthe postings list cursor to document
n, If it exists, or the next greater document.

In our block-based index, we retain an uncompressed
document identifier such that we can skip to the candidate
block efficiently; then we must seek within the block.

Next-GEQ Operator

pisa/include/pisa/block_posting_list.npp - Line 127

UNLIKELY (lower_bound > m_cur_block_max) {
R aa R A e Thapa

if loweF_bound > block_max(m_blocks - 1)) {
m_cur_docid = m_universe;
return;

¥

uint64_t block = m_cur_block + 1;
while (block_max(block) < lower_bound) {
++block;

iy

decode_docs_block(block);
}

while (docid() < lower_bound) {
m_cur_docid += m_docs_buf[++m_pos_in_block] + 1;
assert(m_pos_in_block < m_cur_block_size);

Next-GEQ Operator

If the element we are searching for isin a different
ext geg(uinte: block than the current one...

2) A A A

A_ALWA \ X g
if PISA_UNLIKELY (lower_bound > m_cur_block

if (lower_bound > block_max(m_blocks -
m_cur_docid = m_universe;
return;

¥

uint64_t block = m_cur_block + 1;
while (block_max(block) < lower_bound) {
++block;

iy

decode_docs_block(block);
}

while (docid() < lower_bound) {
m_cur_docid += m_docs_buf[++m_pos_in_block] + 1;
assert(m_pos_in_block < m_cur_block_size);

Next-GEQ Operator

void PISA_ALWAYSINLINE next_geq(uint64_t lower_bound) {
if PISA_UNLIKELY (lower_bound > m_cur_block_max) {

if (loweF_béund >7biock_maxtm_blocks -

m_cur_docid = m_universe; This means the element we are searching for is
FR it larger than the largest element in this postings list.

So, we return.
uint64_t block = m_cur_block + 1;

while (block_max(block) < lower_bound) {
++block;

iy

decode_docs_block(block);
}

while (docid() < lower_bound) {
m_cur_docid += m_docs_buf[++m_pos_in_block] + 1;
assert(m_pos_in_block < m_cur_block_size);

Next-GEQ Operator

void PISA_ALWAYSINLINE next_geq(uint64_t lower_bound) {
if PISA_UNLIKELY (lower_bound > m_cur_block_max) {

k : earcl = here

if (loweF_bound > block_max(m_blocks - 1)) {
m_cur_docid = m_universe;
return;

uint64 t block = m_cur_block + 1;
b eE e O Walk across the uncompressed structure that

++block; stores the maximum identifier in each block until

}
we exceed the target element
decode_docs_block(block);

¥

while (docid() < lower_bound) {
m_cur_docid += m_docs_buf[++m_pos_in_block] + 1;
assert(m_pos_in_block < m_cur_block_size);

Next-GEQ Operator

void PISA_ALWAYSINLINE next_geq(uint64_t lower_bound) {
if PISA_UNLIKELY (lower_bound > m_cur_block_max) {

bina earch seems to perfo vorse here
if (lower_bound > block_max(m_blocks -
m_cur_docid = m_universe;

return;

¥

uint64_t block = m_cur_block + 1;
while (block_max(block) < lower_bound) {
++block;

}
Decode the current block into a buffer - this block
decode_docs_block(block);

} must contain the target element if it exists...
while (docid() < lower_bound) {

m_cur_docid += m_docs_buf[++m_pos_in_block] + 1;
assert(m_pos_in_block < m_cur_block_size);

Next-GEQ Operator

void PISA_ALWAYSINLINE next_geq(uint64_t lower_bound) {
if PISA_UNLIKELY (lower_bound > m r_block_max) {

if (lower_bound > block_max(m_blocks -
m_cur_docid = m_universe;
return;

¥

uint64_t block = m_cur_block + 1;
while (block_max(block) < lower_bound) {
++block;

i
decode_docs_block(block);

while (docid() < lower_bound) {

m_cur_docid += m_docs_buf[++m_pos_in_block] + 1; Now search within the block to find the element (or
assert(m_pos_in_block < m_cur_block_size); the next greater one)

Next-GEQ Operator

Term U;

farm 5

Top-k documents (min-heap) (k = 2)

Postings Lists

next_geq(99)

33

v

.. |34] 3

99

11

4

20

6

3 + 5> Threshold
Score 99

<— Threshold

Next-GEQ Operator

Term U;

Postings Lists

farm 5

Top-k documents (min-heap) (k = 2)

Skipped ¢
3212 (33| 2|[34| 1 46| 3 |[54| 1 99| 1
- 134| 3199 3|

11

4

20

6

3 + 5> Threshold
Score 99

<— Threshold

Skipping - Saving Work

We do not need to decompress any blocks we skip!

We do not need to score any documents within any of those
blocks either!

But we do pay overhead deciding whether to skip or not.

We also need to be very careful with which cursor moves
ahead first. More on this shortly...

Dynamic Pruning Algorithms

Efficient Query Evaluation using a Two-Level Retrieval
Process

Andrei Z. Broder?, David Carmel*, Michael Herscovici*, Aya Soffer:, Jason Zient
($)IBM Watson Research Center, 19 Skyline Drive, Hawthorne, NY 10532
()JIBM Research Lab in Haifa, MATAM, Haifa 31905, ISRAEL
(WIBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120

WAND - “Weak” or “Weighted” AND
CIKM 2003!

Dynamic Pruning Algorithms

QUERY EVALUATION: STRATEGIES AND OPTIMIZATIONS

HOWARD TURTLE and JAMES FLOOD
West Publishing Co., 610 Opperman Drive, Eagan, MN 55123, U.S.A.

(Received January 1995, accepted in final form March 1995)

Abstract—This paper discusses the two major query evaluation strategies used in large text
retrieval systems and analyzes the performance of these strategies. We then discuss several
optimization techniques that can be used to reduce evaluation costs and present simulation
results to compare the performance of these optimization techniques when evaluating natural
language queries with a collection of full text legal materials.

MaxScore
IPM 1995!

Dynamic Pruning Algorithms

WAND and MaxScore are the two main families of
document-at-a-time dynamic pruning algorithms.

Our worked example was inspired by the WAND algorithm.

With WAND, we must ensure the cursors are always
processed in ascending order of their current identifier.

Dynamic Pruning: Walkthrough

Term U; Postings Lists

new 3 - 132] 2(33] 2|34| 1|46] 3|[54| 1|---|99] 1
farm 5 - 1341 399 3|

Top-k documents (min-heap) (k = 2)

11l 4| <— Threshold

20| 6

Dynamic Pruning: Walkthrough

Term U; Postings Lists

I
I
I
new 3 - [32]2]33[2]34[1]46]3]54] 1] [99] 1]

farm 5 - 134| 3((99| 3 |- Invariant: The current identifier under each cursor

must monotonically increase as we move down
. through the cursors.

Top-k documents (min-heap) (k = 2)
That s, “the element being pointed to in list at the
111 4| <— Threshold top must be less than or equal to the element
being pointed to in the list at the bottom”

20| 6

Dynamic Pruning Algorithms

With WAND, we must ensure the cursors are always
processed in ascending order of their current identifier.

This means we may need to sort the cursors during
processing!

WAND: Sorting Cursors

Term U; Postings Lists

new 3 32| 2 (33| 2|34]| 1 (46| 3

farm 5 34| 3|37] 3]41] 3]44] 3] -

WAND: Sorting Cursors

Term U; Postings Lists

new 3 32| 2 (33| 2|34| 1 (46| 3

farm 5 34] 3|37] 3]|41] 3]44] 3] -

WAND: Sorting Cursors

Term U, Postings Lists

v

farm 5 34| 3]37] 3][41] 344 3] ---

new 3 32| 2133]| 2(34| 1|46| 3

WAND: Sorting Cursors

les07k = :_ _ - _:_ _ - _} e :_ _ Just for fgn... What
! I | I happens if we change
T Tl = e o ol it o o g B - - -
s ¢ : : : | E - the sorting algorithm”
E le+05¢= = I— - —: : :
|

Time

I
I

le+04 = = = = _._..._ E4 - 2# , . std:sort
o T

1e+03-—* 1 - - - —00

List Length

MaxScore: No Sorting Required!

Instead of sorting the cursors before each iteration,
MaxScore sorts the lists once before processing begins.

Typically, this sortis ascending on the list upper bounds.

Can also sort on the posting list lengths - either works.

MaxScore: No Sorting Required!

Instead of sorting the cursors before each iteration,
MaxScore sorts the lists once before processing begins.

Term U; Postings Lists

v

farm 5 34| 3|37]| 3 (41| 3 |[44| 3

v

new 3 32| 2 33| 2||34| 1|/46| 3 |54| 1|--

MaxScore: No Sorting Required!

Instead of sorting the cursors before each iteration,
MaxScore sorts the lists once before processing begins.

Term U; Postings Lists

v

farm 5 34| 3|37]| 3 (41| 3 |[44| 3

v

new 3 32| 2 33| 2||34| 1|/46| 3 |54| 1|--

MaxScore: No Sorting Required!

Instead of sorting the cursors before each iteration,
MaxScore sorts the lists once before processing begins.

Term U; Postings Lists

v

new 3 32[233] 2134] 1][46] 3[54] 1]---

v

farm 5 34] 3[37] 341 3]44] 3

MaxScore: No Sorting Required!

Instead of sorting the cursors before each iteration,
MaxScore sorts the lists once before processing begins.

We then compute the prefix sum of the upper-bound scores.

MaxScore: No Sorting Required!

Term U; PS Postings List

v

new 3 32| 2 (33| 2|34] 1|[46] 3 54| 1 |-

v

farm 5 34| 3|137| 3| 41| 3]|44] 3| -

MaxScore: No Sorting Required!

Term U; PS Postings List

v

new 3 3 |32|2](33]2|34| 146|354 1]

v

farm 5 34| 3|137| 3| 41| 3]|44] 3| -

MaxScore: No Sorting Required!

Term U; PS Postings List

v

new 3 3 |32|2](33]2|34| 146|354 1]

v

farm 5 8 |34 3|37| 3| 41| 3]{44] 3| ---

MaxScore: No Sorting Required!

During processing, we split the cursors into two logical sets:

e Essential Lists: A document must have at least one
essential term to be considered for scoring.

e Non-Essential Lists: Are ignored until a final document
score needs to be computed.

We only iterate over the essential lists, allowing us to skip
documents that have no hope of entering the results list.

MaxScore: No Sorting Required!

Term U; PS Postings List

v

new 3 3 ---(32/2133]|21(34| 1(46| 3|54 1]---

v

farm 5 8 ---|34]| 3|37| 3|[41] 3|44| 3

Top-k documents (min-heap) (k = 2)

111 4 | <— Threshold

20| 6

MaxScore: No Sorting Required!

Term U; PS Postings List

v

new 3 3 ---(32/2133]|21(34| 1(46| 3|54 1]---

Y

farm 5 8 ---|34]| 3|37| 3|[41] 3|44| 3

Top-k documents (min-heap) (k = 2)

111 4 | <— Threshold

20| 6

MaxScore: No Sorting Required!

Term U; PS Postings List

v

new 3 3 ---|32|2|33| 21/34| 1(46| 3 |54| 1]---
Non-Essential

+ Essential
farm 5 8 ---(34| 3(37| 3|/41| 3| 44| 3

Top-k documents (min-heap) (k = 2)

111 4 | <— Threshold

20| 6

MaxScore: No Sorting Required!

Term U; PS Postings List

v

new 3 3 ---132| 2133|234 1

46

54] 1]

Non-Essential

farm 5 8 ---(34| 3(37| 341| 3

44

Top-k documents (min-heap) (k = 2)

111 4 | <— Threshold

20| 6

Essential

Always draw the next candidate document
from the set of essential lists, accessing the
non-essential lists only when computing a full
document score.

WAND

Algorithm 3.3: WAND processing.

1

Input :Anarray P of n postings cursors, the largest document identifier, MaxDocID,

and the number of desired results, k.

Output : The top-k documents.

Heap « {}

20«0
3 SortByDocID(P)
4 while true do

40

UpperBound « 0
PivotList « 0
PivotlD « MaxDocID
while PivotList < 7 do // Find the pivot list and pivot document.
UpperBound « UpperBound +P[PivotList].upperbound|()
if UpperBound > 6 then
PivotID « P[PivotList].docid()
while PivotList+1 < 7 and P[PivotList+1].docid() = PivotID do
| PivotList « PivotList +1
end
break
end
PivotList « PivotList +1
end
if UpperBound < 6 or PivotID = MaxDocID then // No pivot. Exit.
| break
end
if P[0].docid() = PivotID then // Can evaluate the pivot document.
Score «+ 0
for List « O to PivotList do
Score « Score +P[List].score()
P[List].next()
end
Heap.push({PivotID, Score))
6 «— Heap.min()
SortByDocID(P)
end
else // Need to align lists with the pivot.
while P[PivotList] = PivotID do
| PivotList « PivotList —1
end
‘P[PivotList].nextGEQ(PivotID)
BubbleDown(P, PivotList)
end
end
return Heap

WAND

Algorithm 3.3: WAND processing.

Input :Anarray P of n postings cursors, the largest document identifier, MaxDocID,

and the number of desired results, k.

Output : The top-k documents.

1 Heap « {}
20«0

3 SortByDocID(P)
4 while true do

40

UpperBound « 0
PivotList < 0
PivntIN o MavDarlN
while PivotList < 7 do // Find the pivot list and pivot document.
UpperBound « UpperBound +P[PivotList].upperbound|()
if UpperBound > 6 then
PivotID « P[PivotList].docid()
while PivotList+1 < 7 and P[PivotList+1].docid() = PivotID do
| PivotList « PivotList +1
end
break
end
PivotList « PivotList +1
end
if UpperBound < 6 or PivotID = MaxDocID then // No pivot. Exit.
| break
end
if P[0].docid() = PivotID then // Can evaluate the pivot document.
Score «+ 0
for List « O to PivotList do
Score « Score +P[List].score()
P[List].next()
end
Heap.push({PivotID, Score))
6 «— Heap.min()
SortByDocID(P)
end
else // Need to align lists with the pivot.
while P[PivotList] = PivotID do
| PivotList « PivotList —1
end
‘P[PivotList].nextGEQ(PivotID)
BubbleDown(P, PivotList)
end
end
return Heap

Find the first document
that might enter the top-k
based on the
upper-bound estimations

This is called the “pivot”
document.

We also track which lists
are “in play”.

WAND

Algorithm 3.3: WAND processing.

Input :Anarray P of n postings cursors, the largest document identifier, MaxDocID,

and the number of desired results, k.

Output : The top-k documents.

1 Heap « {}
20«0

3 SortByDocID(P)
4 while true do

40

UpperBound « 0
PivotList « 0
PivotID « MaxDoclD

while PivotList < 7 do // Find the pivot list and pivot document.

UpperBound « UpperBound +P[PivotList].upperbound|()
if UpperBound > 6 then
PivotID « P[PivotList].docid()
while PivotList+1 < 7 and P[PivotList+1].docid() = PivotID do
| PivotList « PivotList +1
end
break
end
PivotList « PivotList +1
ena

if UpperBound < 6 or PivotID = MaxDocID then // No pivot. Exit.

| break

end

if P[0].docid() = PivotID then // Can evaluate the pivot document.

Score «+ 0

for List « O to PivotList do
Score « Score +P[List].score()
P[List].next()

end

Heap.push({PivotID, Score))

6 «— Heap.min()

SortByDocID(P)

end

while P[PivotList] = PivotID do
| PivotList « PivotList —1

end

‘P[PivotList].nextGEQ(PivotID)

BubbleDown(P, PivotList)

end

end
return Heap

else // Need to align lists with the pivot.

We didn’t find a pivot - we
are done!

Algorithm 3.3: WAND processing.

Input :Anarray P of n postings cursors, the largest document identifier, MaxDocID,
and the number of desired results, k.
Output : The top-k documents.
1 Heap « {}

20«0
3 SortByDocID(P)
4 while true do

5 UpperBound « 0
6 PivotList « 0
7 PivotlD « MaxDocID
8 while PivotList < 7 do // Find the pivot list and pivot document.
9 UpperBound « UpperBound +P[PivotList].upperbound|()
10 if UpperBound > 6 then
11 PivotID « P[PivotList].docid()
12 while PivotList+1 < 7 and P[PivotList+1].docid() = PivotID do
13 | PivotList « PivotList +1
14 end
15 break
16 end
17 PivotList « PivotList +1
18 | end
19 if UpperBound < 6 or PivotID = MaxDocID then // No pivot. Exit.
20 | break
21 end
22 if P[0].docid() = PivotID then // Can evaluate the pivot document.
: . “ . 2
s]| Scoree0 If the first list “points to
24 for List « O to PivotList do i
2 Score « Score +P[List].score() the pivot document, then
2 i all lists “in play” are
27 end
28 Heap.push({PivotID, Score)) 0 q q
2 6 Heap.min() pointing to the pivot. We
30 SortByDocID(P) -
o L oo score the pivot, try to add
32 else // Need to align lists with the pivot. H
33 while P[PivotList] = PivotID do itto the heap’ and then
j: e|ndPivotList « PivotList —1 re-sort the cursors.
36 ‘P[PivotList].nextGEQ(PivotID)
37 BubbleDown(P, PivotList)
38 end
39 end

40 return Heap

WAND

Algorithm 3.3: WAND processing.

Input :Anarray P of n postings cursors, the largest document identifier, MaxDocID,

and the number of desired results, k.

Output : The top-k documents.

1 Heap « {}
20«0

3 SortByDocID(P)
4 while true do

UpperBound « 0
PivotList « 0
PivotID « MaxDoclD

while PivotList < 7 do // Find the pivot list and pivot document.

UpperBound « UpperBound +P[PivotList].upperbound|()
if UpperBound > 6 then
PivotID « P[PivotList].docid()
while PivotList+1 < 7 and P[PivotList+1].docid() = PivotID do
| PivotList « PivotList +1
end
break
end
PivotList « PivotList +1
end

if UpperBound < 6 or PivotID = MaxDocID then // No pivot. Exit.

| break

end

if P[0].docid() = PivotID then // Can evaluate the pivot document.

Score «+ 0

for List « O to PivotList do
Score « Score +P[List].score()
P[List].next()

end

Heap.push({PivotID, Score))

6 «— Heap.min()

SortByDocID(P)

end

while P[PivotList] = PivotID do
| PivotList « PivotList —1
end
‘P[PivotList].nextGEQ(PivotID)
BubbleDown(P, PivotList)

and

end
return Heap

else // Need to align lists with the pivot.

Otherwise, there are lists
that point to documents
smaller than the pivot. We
need to move them up to
the pivot before we score.
Note that this may require
partial sorting
(BubbleDown)

MaxScore

Algorithm 3.2: DAAT MaxScore processing.

1
2
3
4

Input :Anarray P of # postings cursors which are sorted increasing on their

upper-bound values, the largest document identifier, MaxDoclID, and the
number of desired results, k.

Output : The top-k documents.

Heap « {}

6«0

CumulativeBounds « {}
CumulativeBounds[0] « P[0].upperbound)

5 fori—1ton—1do

6

| CumulativeBoundsfi] « CumulativeBounds[i —1] +P[i].upperbound|)

7 end

8
9

PivotList « 0
PivotID « MinimumDoclID(P)

10 while PivotID < MaxDoclID and PivotList < n do

41

Score « 0
NextCandidate < MaxDoclD
for i < PivotList to »—1 do // Score essential lists.
if P[i].docid() = PivotID then
Score « Score +P[i].score()
Pli].next()
end
if P[i].docid() < NextCandidate then
‘ NextCandidate « P[i].docid()
end
end
for i « PivotList —1 to 0 do // Complete scoring on non-essential lists.
if Score + CumulativeBounds[i] < & then
| break
end
P[i].nextGEQ(PivotID)
if P[i].docid () = PivotID then
| Score « Score +P[i].score()
end

end
CurrentBound « 6
Heap.push({PivotID, Score))
6 «— Heap.min()
if CurrentBound < 6 then // The heap threshold increased.
while PivotList < 7 and CumulativeBounds[PivotList] < ¢ do
| PivotList « PivotList +1
end
end
PivotlD « NextCandidate

end
return Heap

MaxScore

Algorithm 3.2: DAAT MaxScore processing.

Input :Anarray P of # postings cursors which are sorted increasing on their
upper-bound values, the largest document identifier, MaxDoclID, and the
number of desired results, k.

Output : The top-k documents.

1 Heap « {}
2 ey

: szﬂ::::::gzz:::[‘()—] E P[O].upperbound() CO m pute the cumu |at|ve

fori« 1ton—1do

Z | CumulativeBoundsfi] « CumulativeBounds[i —1] +P[i].upperbound|) sum Of the u pper— bou nd S
end

; PivotList < 0

9 ST

! Do M o
10 while PivotID < MaxDoclID and PivotList < n do

11 Score <0

12 NextCandidate < MaxDoclD

13 | fori« PivotList to n—1do // Score essential lists.
14 if P[i].docid() = PivotID then

15 Score « Score +P[i].score()

16 Pli]-next()

17 end

18 if P[i].docid() < NextCandidate then

19 ‘ NextCandidate « P[i].docid()

20 end

21 end

2 for i « PivotList —1 to 0 do // Complete scoring on non-essential lists.
23 if Score + CumulativeBounds[i] < & then

24 | break

25 end

26 P[i].nextGEQ(PivotID)

27 if P[i].docid () = PivotID then

28 | Score « Score +P[i].score()

29 end

0 | end

31 CurrentBound « ¢

32 Heap.push({PivotID, Score))

33 6 «— Heap.min()

34 | if CurrentBound < 6 then // The heap threshold increased.
35 while PivotList < 7 and CumulativeBounds[PivotList] < ¢ do

36 ‘ PivotList < PivotList +1

37 end

38 | end

39 PivotlD « NextCandidate

40 end

41 return Heap

MaxScore

Algorithm 3.2: DAAT MaxScore processing.

1
2
3
4
5
6
7

Input :Anarray P of # postings cursors which are sorted increasing on their
upper-bound values, the largest document identifier, MaxDoclID, and the
number of desired results, k.

Output : The top-k documents.

Heap « {}

6«0

CumulativeBounds « {}

CumulativeBounds[0] « P[0].upperbound)

fori—1ton—1do

| CumulativeBoundsfi] « CumulativeBounds[i —1] +P[i].upperbound|)
end

+ PivotList <0
« PivotID « MinimumDocID(P)

41

while PivotID < MaxDoclD and PivotList < # do The pIVOt dOCU ment |S the

Score «+ 0 oo q
NextCandidate « MaxDoclD minimum document in the
for i « PivotList to »n—1do // Score essential lists

if P{i].docid() = Pivot!D then essential lists. We score

Score « Score +P[i].score()

Plilnext() this document, and also

end .
if P[i].docid() < NextCandidate then trac k th en eXt pIVOt

| NextCandidate «— P[i].docid() Candldate
end)
end
T T T SR P TR S O TS i eSS ST a T
if Score + CumulativeBounds[i] < & then
| break
end
P[i].nextGEQ(PivotID)
if P[i].docid () = PivotID then
| Score « Score +P[i].score()
end

end
CurrentBound « 6
Heap.push({PivotID, Score))
6 «— Heap.min()
if CurrentBound < 6 then // The heap threshold increased.
while PivotList < 7 and CumulativeBounds[PivotList] < ¢ do
| PivotList « PivotList +1
end
end
PivotlD « NextCandidate

end
return Heap

MaxScore

Algorithm 3.2: DAAT MaxScore processing.

Input :Anarray P of # postings cursors which are sorted increasing on their
upper-bound values, the largest document identifier, MaxDoclID, and the
number of desired results, k.
Output : The top-k documents.
1 Heap « {}
26«0
3 CumulativeBounds « {}
4 CumulativeBounds[0] « P[0].upperbound()
5 fori—1ton—1do
6 | CumulativeBounds[i] +— CumulativeBounds[i —1] +P[i].upperbound|)
7 end
8 PivotList <0
9 PivotlD « MinimumDocID(P)
10 while PivotID < MaxDoclID and PivotList < n do

11 Score «+ 0

12 NextCandidate «— MaxDoclD

13 for i « PivotList to »n—1do // Score essential lists.
14 if P[i].docid() = PivotID then

15 Score « Score +P[i].score()

16 Pli]-next()

17 end

18 if P[i].docid() < NextCandidate then

19 ‘ NextCandidate « P[i].docid()

20 end

21 e

2 for i « PivotList —1 to 0 do // Complete scoring on non-essential lists. .

23 it"S;ore: CumulativeBounds[i] < 6 then The p|VOt dOCU ment may
2 real .

3| end also occur in the

26 P[i].nextGEQ(PivotID) . 0

N if Pli}docid () = PivotID then non-essential lists; we

28 | Score « Score +P[i].score()

» | | end complete scoring the
2 ftud pivot here.

31 CurrentBound « 6
32 Heap.push({PivotID, Score))
33 6 «— Heap.min()

34 | if CurrentBound < 6 then // The heap threshold increased.
35 while PivotList < 7 and CumulativeBounds[PivotList] < ¢ do

36 ‘ PivotList < PivotList +1

37 end

38 | end

39 PivotlD « NextCandidate

40 end

41 return Heap

MaxScore

Algorithm 3.2: DAAT MaxScore processing.

Input :Anarray P of # postings cursors which are sorted increasing on their
upper-bound values, the largest document identifier, MaxDoclID, and the
number of desired results, k.
Output : The top-k documents.
1 Heap « {}
26«0
3 CumulativeBounds « {}
4 CumulativeBounds[0] « P[0].upperbound()
5 fori—1ton—1do
6 | CumulativeBounds[i] +— CumulativeBounds[i —1] +P[i].upperbound|)
7 end
8 PivotList <0
9 PivotID « MinimumDoclID(P)
10 while PivotID < MaxDoclID and PivotList < n do
11 Score «+ 0
12 NextCandidate «— MaxDoclD

13 | fori« PivotList to n—1do // Score essential lists.
14 if P[i].docid() = PivotID then

15 Score « Score +P[i].score()

16 Pli]-next()

17 end

18 if P[i].docid() < NextCandidate then

19 ‘ NextCandidate « P[i].docid()

20 end

21 end

2 for i « PivotList —1 to 0 do // Complete scoring on non-essential lists.
23 if Score + CumulativeBounds[i] < & then

24 | break

25 end

26 P[i].nextGEQ(PivotID)

27 if P[i].docid () = PivotID then

28 | Score « Score +P[i].score()

29 end

30 end

31 CurrentBound « ¢

32 Heap.push({PivotID, Score))
33 6 «— Heap.min()

34 | if CurrentBound < 6 then // The heap threshold increased.
35 while PivotList < 7 and CumulativeBounds[PivotList] < ¢ do

36 ‘ PivotList < PivotList +1

37 end

38 | end

39 PivotlD « NextCandidate

40 end

41 return Heap

Now we check to see if the
pivot can enter the heap. If
SO, we may need to adjust
the boundary between the
essential and non-essential
lists.

MaxScore vs WAND

e \WAND typically performs well for short queries, and
small values of k
o Asquery length increases, the sorting operations
become expensive.
o Askincreases, dynamic pruning becomes less
effective, as the heap threshold is easier to beat,
meaning we score more documents.

MaxScore vs WAND

e MaxScore typically performs well for long(er) queries,
and large(r) values of k
o No sorting required during processing!

MaxScore vs WAND

Gov2 Clueweb09
60 -
] 100 -
— 30 -]
E -
= q 50 -
g 15 .
"é _ J
o] 25
8 77 J
3 _Ill T T Illllll T T IIIIIII T T IIIII|I 10 III T T IIIIIII T T Illllll T T lllllll
10! 102 103 10* 10! 102 103 10*
Number of retrieved documents Number of retrieved documents
x VBMW = OptPFD . VarintGslU

u MaxScore s SIMD-BP128 . PEF

An Experimental Study of Index Compression and DAAT Query Processing Methods - Mallia, Siedlaczek, Suel, ECIR 2019

MaxScore vs WAND

Gov2 Clueweb09
60
20 1
7 45
E 15 -
£
- 30 -
> 10
5
g 5 - 15 ™
0 I I I I I 0 I I I I I
2 3 4 5 6+ 2 3 4 5 6+
Number of query terms Number of query terms
x VBMW mmm OptPFD . VarintG8IU

u MaxScore s SIMD-BP128 s PEF

An Experimental Study of Index Compression and DAAT Query Processing Methods - Mallia, Siedlaczek, Suel, ECIR 2019

Visualizing Dynamic Pruning

documents in collection

———term upper bound
| doc upper bound
O bypassed
@ scored, rejected

O scored, accepted

Visualizing Dynamic Pruning

documents in collection

———term upper bound
| doc upper bound
O bypassed
@ scored, rejected

O scored, accepted

Visualizing Dynamic Pruning

BC

AC

AB

documents in collection

———term upper bound
| doc upper bound
O bypassed
@ scored, rejected
O scored, accepted

Visualizing Dynamic Pruning

ABCH

BC

AC

AB

documents in collection

———term upper bound
| doc upper bound
O bypassed
@ scored, rejected
O scored, accepted

Visualizing Dynamic Pruning

ABCH
BC

AC

AB

‘_

documents in collection

———term upper bound
| doc upper bound
O bypassed
@ scored, rejected
O scored, accepted

Visualizing Dynamic Pruning

ABC %
BC e
O _\? 7
* | %) o © ——-term upper bound
e o+ 1)\ | doc upper bound
C A~ O
AB ° 6 © bypassed
B © . O Py @ scored, rejected
(L —I—O O scored, accepted
A
0 =

documents in collection

Visualizing Dynamic Pruning

ABC 4 py
BC
o O 0
® %) '_Q_Y o ——-term upper bound
A(C; Ofé j\ {doc upper bound
AB O - © bypassed
B © O " @ scored, rejected
O —(' 3 CL © scored, accepted
i P P
A
0 5 :

documents in collection

Upper-Bound Estimation

MaxScore and WAND use list-wise upper-bounds to make
estimations on document scores. These estimations are
used for “go” or “no go” choices on document scoring.

But using the maximum list-wise score may not be a good
estimate. How can we do better?

Block-Max Pruning Methods

One approach is to store a per-block upper-bound in
addition to the list-wise upper-bound score.

The list-wise upper-bounds drive the initial selection of a
candidate; then a localized upper-bound allows for a more
accurate decision to be made before proceeding.

The obvious downside is the additional space consumption.
But this is typically small, and these bounds can be
compressed.

Block-Max Pruning Methods

cat
dog

monkey

kangaroo

Blockmax = 2.3 l

current threshold=6.8

3y
Blockmax = 1.8 ¥
Blockmax = 3.3 A 4 _
asco gy
5 Bl-ockmax= 4.3 \
9007 gy

Figure 4: An example showing why directly using block max scores

does not work.

Faster Top-k Document Retrieval Using Block-Max Indexes: Ding and Suel - SIGIR 2011

We cannot simply use
the block-max scores to
decide which pivot to
score, or we may skip
documents that should
be in the top-k.

Some optimisations
intentionally do this,
resulting in unsafe
retrieval.

Block-Max Pruning Methods

— However, we can use
ot [T@ wm | the block-max bounds
!
w [TO T @ | to rr_1a_ke better
] ! decisions on what to
monkey | =@ | o |
* process next!
kangaroo| P 1 §
"""""" In this case, the current
Figure 5: An example showing how GetNewCandidate() works. As- bIOCk “CO nﬁg u ration”
sume 266 is the pivot and it fails to make it into the top results. In this cannot y|e | d a
case, we enable better skipping by choosing min(d1, d2, d3, d4) as the)
next possible candidate, instead of 266 + 1 document that will be

admitted into the top-k.

Faster Top-k Document Retrieval Using Block-Max Indexes: Ding and Suel - SIGIR 2011

Block-Max Pruning Methods

Many versions of Block-Max MaxScore and Block-Max WAND
e Window-Based Blocks

e Live-Block Pruning

e Conditional Skipping

e Hybrid Approaches (LazyBM)

e Many more..

Intuitively, all of these algorithms are variations that improve
the plain BMM/BMW algorithms through specific
observations; the literature is dense!

Variable-Sized Blocks

8 2 - - L] -
7 7] 7 Intuition: Fixed-size
iV /LSS 22

blocks may cause large
within-block errors.
Instead, find a
variable-length
partition that reduces
error rate.

.......Z\I\I\"
ANANANNNANN N

RTETTRIRT IR SRR

AN NN

5 blocks, fixed size 3 5 blocks, variable size

Figure 1: Block errors in constant (left) and variable (right)
block partitioning.

Faster BlockMax WAND with Variable-sized Blocks - Mallia, Ottaviano, Porciani, Tonellotto, Venturini - SIGIR 2017

The Ranker does Matter!

k=10
250 | P TR T

m ¥ZZ2 WAND 400
E 200l pmm - BMW.) B B 350 :
;150 =3 LBMW 300 Y 8
8 E=S DBMW e | ’ 3
® joolmm vemw| V| WV /] &
2 73 2 150 Y 2
& soli.a VER.2 100 =R ’ 7
> 2 2 (e 50 Y '.
ov fa /-.- ’ X

Z /] 5

SPL LMDir

b 5 5 o
BM25 F2EXP PL2 SPL LMDir BM25 F2EXP PL2

Figure 2: Mean query latency (in milliseconds) of five WAND-based strategies across five ranking models. Latency is reported
for top-k queries for k = 10 and k = 1000.

Finding the Best of Both Worlds: Faster and More Robust Top-k Document Retrieval - Khattab, Hammoud, Elsayed - SIGIR 2020

The Ranker does Matter!

k=10 k=100 k=1000
o
100% : : ’ I ' [] _:_
N ' L AR
. .
7% s I] i i}
. 3 s z
: H H p
. .
g% i e | i g
T] *ls] =
E ' .
< [} . m
o 25% H .
b '
g H
E 0%
8
8100%- « e . - . .
= o s |, . : . !
@ E3 LvMDs . . H ol I
g 75% e e ' e H 3 '
H 8 t
8 s B
& s0% s i o8 IS
. . H i N
. . 1] .
25%- - : i : i
°] H l . i i
i A A== -L _Lé
WAND BM-WAND WAND BM-WAND WAND BM-WAND

Processing Method

Figure 2: Number of documents scored, expressed as a fraction of
the total number of documents containing any of the terms in that
query. Three different retrieval depths are tested, for two different
collections, for two different similarity computations, and for both
WAND and BM-WAND processing.

Exploring the Magic of WAND - Petri, Culpepper, Moffat, ADCS 2013.

The Ranker does Matter!

k=10 k=100 k=1000

100% . . 9 : ' ' — WAND BM-WAND
. . H * g E
C : i I I 30
75% . g { i} '
.
. 3 |4 =
5 : i H 2
T 50%- 8 . . ' H - 2 20
g ' °ls ! 5 o
3 HEN | . B §
> H B
o 25% H . &
) []
5 H 10-
Q .
E 0%
S 100 . . . ®
% - . . e
% o |mmewes |, * 3 ' £ e 8
- 5 tuos . . . % | 291
8 75% . . ' . : : | £
g 5 .l . $ |y E
g sov) L} : 3 8 e
o 50%- . .
. . : : 3
. . . 10-
. . i] '
2% ¢ . : " s
AT | :
0% —'— _l_; —,— @
WAND BM-WAND WAND BM-WAND WAND BM-WAND 0
Processing Method
Figure 2: Number of documents scored, expressed as a fraction of ;
the total number of documents containing any of the terms in that 0% 25% 50% 75% 100% 0% 25% 50% 75% 100%
" : i Il posti
query. Three different retrieval depths are tested, for two different Rereentage of all poslings processed
collections, for two different Slmll'al‘lty computations, and for both Figure 3: Distribution of evaluated documents as the postings lists for query “north korean counterfeiting” (topic 808) are evaluated
WAND and BM-WAND processing. for both WAND and BM-WAND processing using LMDS and BM25 similarity measures.

Exploring the Magic of WAND - Petri, Culpepper, Moffat, ADCS 2013.

MaxScore vs VBMW

Gov2 Clueweb09
60 -
] 100 -
— 30 -]
E -
= q 50 -
g 15 .
"é _ J
)] 25 -
8 77 J
3 _Ill T T Illllll T T IIIIIII T T IIIII|I 10 III T T IIIIIII T T Illllll T T lllllll
10! 102 103 10* 10! 102 103 10*
Number of retrieved documents Number of retrieved documents
x VBMW = OptPFD . VarintGslU

u MaxScore s SIMD-BP128 . PEF

An Experimental Study of Index Compression and DAAT Query Processing Methods - Mallia, Siedlaczek, Suel, ECIR 2019

MaxScore vs VBMW

Gov2 Clueweb09
60
20 1
o' 45
E 15 -
£
- 30 -
> 10
5
g 5 - 15 ™
0 I I I I I 0 I I I I I
2 3 4 5 6+ 2 3 4 5 6+
Number of query terms Number of query terms
x VBMW mmm OptPFD . VarintG8IU

u MaxScore s SIMD-BP128 s PEF

An Experimental Study of Index Compression and DAAT Query Processing Methods - Mallia, Siedlaczek, Suel, ECIR 2019

Other Enhancements

e Threshold Priming: If we can make a good estimate of
the terminal heap threshold before processing, we can

skip more documents!

>

Score and upper-bound
:
O
.{
|

Documents in collection

Other Enhancements

Threshold Priming: If we can make a good estimate of
the terminal heap threshold before processing, we can
skip more documents!

o
c —
3 O
o T
3 T o .
: ° L6
5 e T
{ . SRS - I | ‘ ! - i ‘
2 T & T T‘ (© -
o® i 00 & %°
Q g i o
e B =
| ® -0 o o _

Documents in collection

Other Enhancements

Threshold Priming: If we can make a good estimate of
the terminal heap threshold before processing, we can
skip more documents!

-

c -

3 O

o T

o § T o .

= | o T8

> _ i 1 ©® T4

° i (©) T T “

- ““"'!"”‘ﬁ_,: - @ o .

o P ® - P o’ @

ol -® 7T AN Z |

(0 e @& o e

m(> Q_J_ o // ® O -
—————

Documents in collection

Other Enhancements

Threshold Priming: If we can make a good estimate of
the terminal heap threshold before processing, we can
skip more documents!

-
c -
3 O
o T
3 T o .
S O 6
> A T © 7
2 L ryn T 5‘
= @ o T e T
Q g i o
s |70 - [P ® ®
————— -

Documents in collection

Other Enhancements

Threshold Priming: If we can make a good estimate of
the terminal heap threshold before processing, we can
skip more documents!

>

e e e

—_——— e —

Sc%e\and upper-bound
\
\
@
|
o
‘]
/.
@

Documents in collection

Other Enhancements

e Index Reordering (Document Identifier Reassignment)
If we can “cluster” similar documents together, we will
get lots of runs of “1”s in our postings lists

Recall: Postings are strictly increasing on document id,
so we delta code them.

Other Enhancements

e Index Reordering (Document Identifier Reassignment)
If we can “cluster” similar documents together, we will
get lots of runs of “1”s in our postings lists

Recall: Postings are strictly increasing on document id,
so we delta code them.

Storing Postings in Practice Storing Postings in Practice

DoclDs [12]14]27]29]30]55]59]86] - DoclDs [12] 2[13] 2 225] 4 [27] -~

Frequencies [3[4 [3] 1] 1]5]2]3] -~ Frequencies [3[4 [3]1]1]5]2]3] -~

Other Enhancements

| | | | I |
2000 = = e s o halatal Bl ok dia] TRt S
| 1 1 | I |
| I] | 1 |
10001 —pss =1— = — = = ----F--r-—-F-T--
. ©) I I I I I I
@ | I | | | |
5500————| ————— - Fs-r—-—¢>-T--
) | | 1 t @ | 1y
§ | |] 1 & |
= | | 1 a1 (P
200f R Bply — -l - -lma=r A& 1+ £ -
| 1. RS A 1 1 1
R Re PRy A 1 1 I i
P+k+S ./
1001 = = =1= = 7= — 18— — WY 4o 1= — gt — -
P+R+S
PRSI PR T s ; :
1 l I PHOHRA 1
15 20 25 30 35 40
Space [GiB]

O RankedOR O WAND & BMW A VBMW
@ OptPFD o PEF @ SIMD-BP128 ® Varint-G8lU

Experiment: All
combinations of
priming, quantization,
reordering, stopping on
Clueweb12B (52 million
web documents).

Efficiency innovations
are, broadly speaking,
additive!

Examining the Additivity of Top-k Query Processing Innovations: Mackenzie and Moffat - CIKIM 2020

Other Enhancements

Experiment: All

Optimizations RankedOR WAND BMW VBMW combinations of

None 135.7 49.1 45.6 45.6 p”m'ng’ quantization,

One 87.9 (x13) 26.6 (x18) 19.2 (x249 17.9 (x26) reorderlhg, Stopplng on

Two 62.6 (%22 20.3 (x24) 14.8 (x3:0) 13.3 (X3.4) I

Three 5620a0 155w 128cms 109 xa Clueweb12B (52 million

All 547 29 1380a9 11.6xan 9.7 (xan web documents).

Between 2.5 to 4.7 X speedups. Efficiency innovations
Taking stock of the current state of top-k query processing: Can 2l _b_roadly Speaklng’
additive!

retrieve the top 1000 candidates on a 52 million document collection

in < 10 milliseconds.

Examining the Additivity of Top-k Query Processing Innovations: Mackenzie and Moffat - CIKIM 2020

Rule(s) of Thumb

1. Use MaxScore when queries are long, or kis large; Use
VBMW otherwise;

2. Stopping is almost always a good ideg;

3. Useindex reordering if you can afford it (offline cost);

4. If you don't know which (statistical) ranker to use, just
stick to BM25 - it is fast, and well behaved;

5. Empirical experimentation is always beneficial!

Session l: Indexing and Retrieval

Practice

Indexing and Querying with PISA

We will now work through Section 1 of the practical.

Tutorial: https://shorturl.at/VExpG

Aka: https://github.com/pisa-engine/pisa/blob/main/test/docker/tutorial/instructions.md

https://shorturl.at/VExpG
https://github.com/pisa-engine/pisa/blob/main/test/docker/tutorial/instructions.md

Session 1.5: Discussion & Coffee

Session ll: Learned Sparse Retrieval

The key characteristic that makes
inverted indexes work is sparsity.

Lexicon Postings Lists
rchi [
MISCOOT 1 [Tsearc h [4— [o[1][A]1][2]7]
| |e+—> |0] 1
Documen t1 i - L 1|2|1|
yone|~+—— [2]1
search is fi
Documen t2
rch is fu
for everyon

The key characteristic that makes
inverted indexes work is sparsity.

search [
Dy «ivi [[FEREE Ew AT AR
| — (0] 1
Documen t1 f - 1[1][2]1]
vone|+—» [2]1
search is f
D <IvI [
Documen t2
search is fu
|D2| <V % for yon

The key characteristic that makes
inverted indexes work is sparsity.

Document 0

m : Lexicon Postings Lists
ID.| < |V Searcii is €00 search [+—— [o[][[1][2]1]
Y cool |e—> |01
Document 1 L - L I 2| L I
everyone|t—» | 2| 1

search is fun
D <IvI [

Document 2

search is fun
2 \ for everyone

Thousands-Millions
(number of words in English)

The key characteristic that makes
inverted indexes work is sparsity.

Document 0

m : Lexicon Postings Lists
ID.| < |V Searcii is €00 search [+—— [o[][[1][2]1]
Y cool |e—> |01
Document 1 L - L I 2| L I
everyone|t—» | 2| 1

search is fun
D <IvI [

Document 2

search is fun
2
, N for everyone

Thousands-Millions
(number of words in English)

The key characteristic that makes
inverted indexes work is sparsity.

Document 0

m : Lexicon Postings Lists
ID.| < |V Searcii is €00 search [-— [0 [1][2]1]
Y cool |e—> |01
Document 1 iLis ~ 11E I 2| L I
everyone|t—» | 2| 1

search is fun
D <IvI [

Document 2
search is fun
|D2| <V % for everyone

Documents are only “about” a
small number of terms

The key characteristic that makes
inverted indexes work is sparsity.

Document 0

. Lexicon Postings Lists
s2archizicool search [— OOOOIREG < p |« (g
cool |[e+—> |0 1 , searcn \
Document 1 L - L1E | 2| i I / \
everyone|t—» | 2| 1
search is fun 3 Thousands-Billions

(number of documents in corpus)

Document 2

search is fun
for everyone

The key characteristic that makes
inverted indexes work is sparsity.

Document 0

Lexicon Postings Lists
search is cool
search [«+—> [0] 1] 1] 1] 2] 1] [= | < |C]
cool |[—> |01 searcn
Document 1 L - L | 2| L I
everyone|—» [2] 1 Terms are only related to a

search is fun small number of documents
Well... Mostly (see stopwords)

Document 2

search is fun
for everyone

The key characteristic that makes
inverted indexes work is sparsity.

Document 0

search is cool

Document 1

search is fun

Lexicon

Postings Lists

—>| search

— |0 1] 1] 1] 2] 1]

—>| cool

fun

bl I A 0 O I ¢

everyone

Document 2

€ cool search

search is fun
for everyone

Queries are only “about”
a small number of terms

Up to now, we've relied on the presence of
tfermsin documen’rs/querles to enforce
spcrsrry

l
Culpeper Herbal 4
———— Wells War of Worlds

0.01 ¢ =
: This works because of Zipf’s Law - very few
terms typically have high frequently in a corpus.
0.001 £ E

0.0001 |-

L \
I| 1 1 IIIIII| 1 Il IIIIII| 1 1 IIIIII| 1 1 I\IIIIII
1 10 100 1000 10000

A plot of the frequency of each word as a function of its
frequency rank for two English language texts. CC BY-SA 4.0

Working Example

Query: F1 winner
Document: Max Verstappen says 3rd Formula One world championship title is his 'best one' so far
LOSAIL, Qatar (AP) — Max Verstappen believes his third Formula One title is his best yet.

Clinching the championship in a sprint race Saturday in Qatar didn't pack the emotional impact of his
dramatic, controversial last-lap overtake of Lewis Hamilton for the 2021 title. Still, the Red Bull driver thinks
his relentlessly consistent 2023 season has been his greatest so far.

“This one is the best one,” Verstappen said. ‘I think the first one was the most emotional one because
that’'s when your dreams are fulfilled in Formula One. But this one definitely in my opinion has been my
best year also for consecutive wins and stuff. The car itself has been probably in the best shape as well.
This one is probably (the one) I'm most proud of in a way because of consistency.”

Source: AP Online News

Term-Based Representations

Maps a query and document to a sparse “bag-of-words” representation using:
- TF (importance of term to the document, based on repetition)

- IDF (relative importance of term to the query, based on how many documents it
appears in)

- Other Lexical Signals (e.g., document length for normalization, etc.)

Ztéq log (d_%) | kl.(1—b(—|]-c;-—|_<12;ietd>>+tftd

avg

Term-Based Representations

Maps a query and document to a sparse “bag-of-words” representation using:
- TF (importance of term to the document, based on repetition)

- IDF (relative importance of term to the query, based on how many documents it
appears in)

- Other Lexical Signals (e.g., document length for normalization, etc.)

Query: { f1: 10, win: 3 }

Document: { verstappen: 17, race: 13, one: 11, titl: 10,
formula: 8, grand: 7, prix: 7, saturday: 6,
gatar: 6, win: 5, sunday: 4, ..., max: 2,

Term-Based Representations

Problems with term-based representations:
(1) TF and IDF aren’t always good estimators of term importance

Example: “Saturday” probably isn’t more important than “Sunday” in the article
(if anything, “Sunday” is more important to the document — that’s when the race was)

Term-Based Representations

Problems with term-based representations:

(1) TF and IDF aren’t always good estimators of term importance

Example: “Saturday” probably isn’t more important than “Sunday” in the article
(if anything, “Sunday” is more important to the document — that’s when the race was)

(2) Lexical mismatch: variations of terms that appear in the query/document

Example: “F1” is very important in the article, but isn’t mentioned
(similar terms are, though, e.g., “Formula One”)

Learned Sparse Retrieval (LSR) uses
neural networks to produce better
bag-of-words representations

(addressing the aforementioned issues)

Learned Sparse Retrieval

Three key techniques:

(1) Term weighting (addresses importance estimation)
(2) Expansion (addresses lexical mismatch)
(3) Sparsification (manages compute & storage efficiency of (2))

(1) Term Weighting

Main idea: Use a neural network to estimate the “importance” of each token.
Implemented as a token-level prediction task.

10 12 11 12 2 4 1 18 16 8 7

S S S S S S S S S SR

BERT / RoBERTA / etc.

bt ot b E b b bt

max ver ##istap ##fpen says 3 ##frd formula one world champion ...

(1) Term Weighting

Main idea: Use a neural network to estimate the “importance” of each token.
{formula: 18, one: 16, ver: 12, ##pen: 12, ##stap: 11, ...}

10 12 11 12 2 4 1 18 16 8 7

S S S S S S S S S SR

BERT / RoBERTA / etc.

e

max ver ##istap ##fpen says 3 ##frd formula one world champion ...

(1) Term Weighting

Term weighting can be applied to the document [1] and/or the query [2].
They can even learn what to remove (weight=0) [3]

[1] Zhuyun Dai, Jamie Callan. Context-Aware Sentence/Passage Term Importance Estimation
For First Stage Retrieval. arxiv 2019. link

[2] Sean MacAvaney, Franco Maria Nardini, Raffaele Perego, Nicola Tonellotto, Nazli Goharian, Ophir Frieder.
Expansion via Prediction of Importance with Contextualization. SIGIR 2020. Link

[3] Mackenzie et al. Efficiency Implications of Term Weighting for Passage Retrieval. SIGIR 2020. link

https://arxiv.org/abs/1910.10687
https://arxiv.org/abs/2004.14245
https://www.cs.cmu.edu/~zhuyund/papers/SIGIR2020DeepCT-efficiency.pdf

(2) Expansion

Goal: Identify new terms to add to the document (and estimate their importance)
Two main approaches:
(2a) External Expansion

(2b) Masked Language Modeling (MLM) Expansion

(2) Expansion

(2a) External Expansion

Use another model (such as Doc2Query [1]) to add expansion tokens to document [2], then
apply term weighting.

- How many F1 championships has
Verstappen won?

—> Doc2Query, etc. —_— - What did Max Verstappen say
about winning his third racing
championship?

“Max Verstappen says
3rd Formula One
world championship
title is his 'best one' so
far...”

[1] Rodrigo Nogueira, Wei Yang, Jimmy Lin, Kyunghyun Cho. Document Expansion by Query Prediction. arxiv 2019. |ink

[2] Antonio Mallia, Omar Khattab, Nicola Tonellotto, Torsten Suel. Learning Passage Impacts for Inverted Indexes. SIGIR
2021. link

https://arxiv.org/abs/1904.08375
https://arxiv.org/abs/2104.12016

(2) Expansion

(2a) External Expansion

Use another model (such as Doc2Query [1]) to add expansion tokens to document [2], then
apply term weighting.

Doc2Query,
etc.

“Max Verstappen says 3rd Formula One
world championship title is his 'best one'
so far...” + “How many F1
championships has Verstappen
won?” + ...

BERT / RoBERTA/
etc.

.

[term weights]

[1] Rodrigo Nogueira, Wei Yang, Jimmy Lin, Kyunghyun Cho. Document Expansion by Query Prediction. arxiv 2019. Link

[2] Antonio Mallia, Omar Khattab, Nicola Tonellotto, Torsten Suel. Learning Passage Impacts for Inverted Indexes. SIGIR

2021. link

https://arxiv.org/abs/1904.08375
https://arxiv.org/abs/2104.12016

(2) Expansion

(2b) Masked Language Modeling Expansion

Use the model’'s Masked Language Modelling head to get expansion terms.

(2) Expansion

(2b) Masked Language Modeling Expansion
Use the model’'s Masked Language Modelling head to get expansion terms.

Review: Pre-training a BERT-like language model

{says: 0.3, suggests: 0.2, said: 0.2, tweeted: 0.1, ...}

?

I Masked Language Modeling Head

BERT / RoBERTA / etc.

b r o+ttt t ottt 4

max ver ##stap ##pen [MASK] 3 ##rd formula one world champion ...

(2) Expansion

(2b) Masked Language Modeling Expansion

Use the model’'s Masked Language Modelling head to get expansion terms.

{formula: 0.8, f1: 0.2, ...}
?
[]

BERT / RoBERTA / etc.

bbb b bt bt

max ver ##istap ##fpen says 3 ##frd formula one world champion ...

(2) Expansion

(2b) Masked Language Modeling Expansion

Use the model’'s Masked Language Modelling head to get expansion terms.

{formula: 18, one: 16, ver: 12, ##pen: 12, £1: 10, ...}

(.} {.} ({.} .}y {..} ({.} {..} {.} {..} {..}
S

[- B B N N N BN [
BERT / RoBERTA / etc.

bbb b bt bt

max ver ##istap ##fpen says 3 ##frd formula one world champion ...

(2) Expansion

(2b) MLM Expansion can be learned end-to end, and can be applied to
the document [1] and/or the query [2].

[1] Sean MacAvaney, Franco Maria Nardini, Raffaele Perego, Nicola Tonellotto, Nazli Goharian,
Ophir Frieder. Expansion via Prediction of Importance with Contextualization. SIGIR 2020. link

[2] Thibault Formal, Benjamin Piwowarski and Stéphane Clinchant. SPLADE: Sparse Lexical and
Expansion Model for First Stage Ranking. SIGIR 2021. Link

[3] Zhuang and Zuccon. Fast Passage Re-ranking with Contextualized Exact Term Matching and
Efficient Passage Expansion. |ink

https://arxiv.org/abs/2004.14245
https://arxiv.org/abs/2107.05720
https://arxiv.org/abs/2108.08513

(3) Sparsification

MLM Expansion actually makes the output vectors dense — it computes an
importance score for every token in the lexicon (10’s of thousands of dimensions).

We could index these vectors in dense vector stores, but they’re very large,
and this makes retrieval slow.

Instead, we sparsify, allowing vectors to be used in typical inverted indexes (e.g., Lucene)
Sparsification approaches:

(3a): Top-K Pruning [1] (post-hoc pruning of lowest vector dimensions)

(3b): FLOPS Regularisation [2] (end-to-end optimisation to push dimensions to zero)

(3c): DF-FLOPS Regularisation [3] (objective to reduce number of terms per document)

[1] Sean MacAvaney, Franco Maria Nardini, Raffaele Perego, Nicola Tonellotto, Nazli Goharian, Ophir Frieder. Expansion
via Prediction of Importance with Contextualization. SIGIR 2020. link

[2] Thibault Formal, Benjamin Piwowarski and Stéphane Clinchant. SPLADE: Sparse Lexical and Expansion Model for
First Stage Ranking. SIGIR 2021. Link

[3] Porco et al. An Alternative to FLOPS Regularization to Effectively Productionize SPLADE-doc. SIGIR 2025. link

https://arxiv.org/abs/2004.14245
https://arxiv.org/abs/2107.05720
https://arxiv.org/abs/2505.15070

Which LSR methods produce better relevance
estimates?

In general:

Query Weighting (query expansion only helps a little when document is expanded)
+

Document MLM Expansion
+

Regularisation (for optimal trade-offs) or Top-K (for flexibility)

(Find out more in the Neural Lexical Search with Learned Sparse Retrieval tutorial this afternoon.)

How do LSR methods affect retrieval algorithms?

Term Weighting greatly affects impact distributions

0.75 -

* 4 I - Normalized maximum list impact dis-
+ tribution stratified by list length buckets

0.50 1 b € [2"b, 2"bH1).

0.25 1 e

Normalized List Max Impact

i
0.00 + . = -

0 2 4 6 8 10 14 16 18 20 21 22 23 24
List Bucket [b]
E3 BM25 B8 DocT5Query EJ Deeplmpact E3 uniCOIL

Wacky Weights in Learned Sparse Representations and the
Revenge of Score-at-a-Time Query Evaluation

Joel Mackenzie,' Andrew Trotman,” Jimmy Lin’
! School of Computing and Information Systems, The University of Melbourne, Australia
% Department of Computer Science, University of Otago, Dunedin, New Zealand
3 David R. Cheriton School of Computer Science, University of Waterloo, Ontario, Canada

Term Weighting greatly affects impact distributions

1.00 1 Long posting lists
have high learned
e | impact scores

0.50 4L

0.25 1 e

Normalized List Max Impact

8
0.00 4 . Long posting lists
B S M have low BM25

impact scores

0 2 4 6 8 10 14 16 18 20 21 22 23 24
List Bucket [b]
BM25 B8 DocT5Query E3 Deeplmpact EZ uniCOIL

Wacky Weights in Learned Sparse Representations and the
Revenge of Score-at-a-Time Query Evaluation

Joel Mackenzie,' Andrew Trotman,” Jimmy Lin’
! School of Computing and Information Systems, The University of Melbourne, Australia
% Department of Computer Science, University of Otago, Dunedin, New Zealand
3 David R. Cheriton School of Computer Science, University of Waterloo, Ontario, Canada

Term Weighting greatly affects impact distributions

0.75 1 i
+* L I This means we need to visit more
+1'

= blocks in long posting lists, increasing
traversal time

0.50 -

o

0.25 1 e
- i
0.00 - ¥ . =

0 2 4 6 8 10 14 16 18 20 21 22 23 24
List Bucket [b]
E3 BM25 B8 DocT5Query EJ Deeplmpact E3 uniCOIL

Wacky Weights in Learned Sparse Representations and the
Revenge of Score-at-a-Time Query Evaluation

Normalized List Max Impact

Joel Mackenzie,' Andrew Trotman,” Jimmy Lin’
! School of Computing and Information Systems, The University of Melbourne, Australia
2 Department of Computer Science, University of Otago, Dunedin, New Zealand
3 David R. Cheriton School of Computer Science, University of Waterloo, Ontario, Canada

Term Weighting greatly affects impact distributions

Distributions Make or Break Efficiency

Efficient top-k processing algorithms use term
upper-bound scores to bypass documents which
cannot score highly.

e These algorithms find it more difficult to
effectively prune the search space with the
impact distributions from learned sparse
models.

Documents Scored

e More documents are scored; query
processing is slower.

5.0

2.5

0.0

e e e o e o e o -

[Mi

llions]

1.00

0.75

0.50

025

+ 0.00

[Normalized]

oL

There are very long posting lists, too.

Some posting lists
contain (nearly)
every document.

100 —

80 0o FLOPS

60 [0 DF-FLOPS

40 - *
20

Py LT eeveeeeeen
Figure 2: Top 100 DF% in representations produced by SPLADE-Doc
with FLOPS and DF-FLOPS on a sample of 100K passages.

DF %

Porco et al. An Alternative to FLOPS Regularization to Effectively Productionize SPLADE-Doc. SIGIR 2025.

There are very long posting lists, too. Why?

Some tokens are repurposed and included in many queries and documents.

Ends up being partially a pseudo “dense” vector.

androgen receptor define —

(‘##rogen’, 251) (‘receptor’, 242) (‘and’, 225) (‘receptors', 189)
'hormone’, 179) (‘definitiog’ 16
'is', 70) (',', 68) §define', 59
8) (gene', 37) (‘are’,

'meaning’, 99) (‘genus’, 89)
'drug’, 53) (‘for', 46)
1at’, 18) (‘##rus', 15)

ring,

(‘purpose’, 12) (‘defined’, 10) ("doing’, &

Mackenzie et al. Exploring the Representation Power of SPLADE Models. ICTIR 2023.

There are very long posting lists, too.

Document 0

. Lexicon Postings Lists
search is cool search T+ NEEEE |
cool |=—> |0]1
Document 1 L o> Hin l 2| . l
everyone|t—» | 2| 1
search is fun
Document 2 Assumption no longer holds.
search is fun
for everyone

Expansion causes much less sparsity in queries/docs

MSMARCO Passages (dev queries)

Terms in Documents

Terms in Queries

Method 4

Total Unique Total Unique
BM25 2660824 39.8 5.9
BM25-T5 3929111 2247 : 5.9 8
DeepImpact 3514102 4010.0 71.1 4.2 4.2
uniCOIL-T5 27678 5032.3 66.4 686.3 6.6
uniCOIL-TILDE 27646 8260.8 076 661.1 :
SPLADEv?2 28131 10794.8 2037.8

Expansion causes much less sparsity in queries/docs

Document 0

Lexicon Postings Lists
search [«—> [o| 1] 1] 1][2] 1]
cool |+
fun |+
everyone |+

C), cool search

Assumptions no longer hold.

So what can we we do about these problems?

Guided Traversal (GT)

It proposes guided traversal to accelerate top-k
processing with learned sparse models.

e The original BM25 score for each document
(over a DocT5Query expanded index) is
stored alongside the learned (Deeplmpact)
score.

e Atquerytime, BM25 is used to guide the
index traversal, but scores are computed via
the learned model (Guided Traversal — GT).

e TheBM25 score can also be interpolated
with the Deeplmpact score on-the-fly
(Guided Traversal with Interpolation — GTI).

Postings List Postings List

] / ¢ Decode
I e
/ L 786460

' -
---‘

o5 o %6 o Tor K
BM25 Learne BM25 Learned Heaps
(a) Candidate Selection (b) Decoding Posting
Postings List Postings List
— N F— E—
Decode ¥
EE Joiceu iy
AR 1T I Lo
BM25 Learne BM25 Learne Heaps

(c) Decoding Impacts (d) Document Scoring

Mallia et al. "Faster learned sparse retrieval with guided traversal." SIGIR 2022.

Guided Traversal (GT)

MaxScore
Strategy
Mean Median Py RR@10
DocT5Query 3.3 2.8 12.2 0.272
Deeplmpact 19.5 140 79.6 0.326
Dual-Heap 4.6 3.9 15.8 0.326
Dual-Heap w. Interp. (¢ = 0.5) 4.6 3.9 158 0.335

Guided Traversal (GT)

TREC 2019 TREC 2020
I [| C — _ Lo __L =4
o7oH - — K 4@ £1- + - X1 I
| 1 I --AL - -L _
06541 — s — 4 O = = + = | I
I + I I - ¥ L --L_-
0601 = = = = = = = = [1
I 1 -_— ==L - - _L -
055+1— — — 4 —— — + — 1 I
| 1 1 - — =L - - L -
S 1 10 100 10 100
Q
& MSMARCO Dev ® BM25
(]
= ; : . DeepCT
035 — —xz t — ==t =
| I | Deeplmpact
030l — — - L _ _ L _ Deeplmpact-GT
: : : X Deeplmpact-GTI
025tg==—-=—-T—-=-=-7T1 - % DocT5Query
I 1 1 SPLADEv2
020 = = =4 - - - L - TILDEv2
I @ l
1 10 100 uniCOIL
Time [ms]

Mallia et al. "Faster learned sparse retrieval with guided traversal." SIGIR 2022.

Two-Level Guided Traversal (2GT)

Global pruning — hybrid BM25 + learned upper
bounds filter whole posting-list regions.

Local pruning — hybrid bounds tighten inside each
candidate document.

Alignment smoothing makes BM25 weights denser
to match the learned index.

Two tunable coefficients (a for global, 8 for local) cap
BM25’s influence and prevent over-aggressive skips.

SPLADE++ UniCOIL
104
“— » i
0.9- = .
X = B \{
©os S =
] N ~
g 0.7 '\ 5 \.
9 :
0.6- - _:
N\
0.5 — - .
1000 500 100 50 20 10 1000 500 100 50 20 10
0.400 = [a s - 1
0.375-
o el e B B B (] (]
B 0-350- R T
£ 0.325-
0.300
—
0.275-, - et — . . :
1000 500 100 50 20 10 1000 500 100 50 20 10
K K
Original - (GTI s 2GTI

Qiao et al. "Optimizing guided traversal for fast learned sparse retrieval." WWW 2023.

Postings Clipping

|L(7)]=21 H@[=4

il

UH(t)
l]ll(t)
It [\F

Single List 7, Low List £(?) High list H(?)

Top-k Query Processing

Priming can be applied whenever
any high-impact list contains k or
more postings

0o = max{Upgy) [t € Q A |[H(t)] > k}
can be used as a priming value for

the heap bound, without risking the
integrity of the top-k answers.

ASC

Clustered posting lists

DocI D

i y 3 = .
Segmented bounds: slice each cluster into n f BRRE] 2|45 [10f12]15]20{25]2732 40
random segments, store per-segment max ; = =1 | |
weights — tighter MaxSBound / AvgSBound T 5 BRG] 1[3]6|8]13]14 25|26 31]42]

S

f = : >

Two-level test: prune cluster if MaxSBound < 8/ 13 wTh 9 [12]15]17] 22|24 | 28]29[3536] a1
and AvgSBound < 8/n; else dive to doc-level ‘i‘

pruning ate/ n. Cluster 1 Cluster 2 * Cluster 3 | | Cluster 4

Segmented !
Parameters: 0 <y <n < 1. Pick p for term max ¢t f
aggressiveness, n (often 1) for probabilistic safety. weights f

(a) Cluster skipping index with 2 weight segments per cluster

Qiao et al. Threshold-driven Pruning with Segmented Maximum Term Weights for Approximate Cluster-based Sparse Retrieval. EMNLP 2024.

Seismic

Top Document Coordinates

0 50 100 150 ZQO
K ' i
~50.75
An approximate retrieval solution that trades off exact ‘f;o‘i / =
search for efficiency. == | — Documents
0 20 40 60 80

Top Query Coordinates

Figure 1: Fraction of L; mass preserved by keeping only the
It relies on: top non-zero entries with the largest absolute value.

T 1.0
3

e Concentration of Importance

o o
N

Top Query Coordinates

3 12
/’_// 6 — 15
—E

° Block Upper Bounds 0 25 50 75 100 125 150 175 200

Top Document Coordinates

e Static Document Pruning

o

Fraction of Inner Prod

o o
w

Figure 2: Fraction of inner product (with 95% confidence in-
tervals) preserved by inner product between the top query
and document coordinates with the largest absolute value.

Bruch et al. Efficient Inverted Indexes for Approximate Retrieval over Learned Sparse Representations. SIGIR 2024.

Seismic

[Inverted Index] [Forward Index
. —— U ot s
[C1] E[summary][postings] ':[summary][postings] """" é[summa.ry] [postings]i [dq] :[components } [values]
B B B (e |

..

e Em e EmEEeE,E e, EEEEEEE S e e e mmm_m_, e mmemsssssmemm.-—————-

Bruch et al. Efficient Inverted Indexes for Approximate Retrieval over Learned Sparse Representations. SIGIR 2024.

Documents as Sparse Vectors

q
HEEDS

IRREDR

g g g

cool
hPe,
NYC
I
Pinecone
love

LEXICON
too
short

Block-Max Pruning

QUERY

Partition priorities

Block partitioning: The document ID space is split into fixed-size blocks;
each block stores a pre-computed vector of its terms’ maximum impact

)

scores. A
% Top-k Heap
Per-block upper bounds: At query time, term weights are applied to those o ()
block-max vectors and summed, producing an overall score upper bound for E Q (=)
every block.
i g ONC

Priority-driven evaluation: Blocks are visited in descending order of their
upper-bound scores (lazy sorting) until a stopping criterion is satisfied.

Hybrid access: When a block is chosen, lookup switches to a forward-style

structure embedded alongside the inverted lists, enabling fast in-block scoring
without full postings scans.

Mallia et al. Faster Learned Sparse Retrieval with Block-Max Pruning. SIGIR 2024.

Clustering of Documents

Imagine assigning consecutive doclDs to similar documents.
First focus on better compression.

Recently, more focus on faster query processing.

0 @)
@) - > 9 MAXIMIZE SPARSITY
1 'O'_ O Random BP
] 100 100
— = =5 . + ° é 50
O * [] § o T
| - 20 % L X — 20 ¥ ®
o) @) X 10 $ = i X X 10 I + * s L 1
< — s 5 ¢ & 1 g 5 i g % X
« « X
2 x 2 -§ x
DM Da D3 MAx £ % 2] X !
) - X
05 ¢ 05 %
X
X
0.1 0.1
32 64 128 256 512 1024 32 64 128 256 512 1024
Block size Block size

Threshold k
B Real B Estimated X 10 ® 1,000 + 10,000

Bipartite Graph Partitioning

DOCUMENTS

TERMS

Bipartite Graph Partitioning

deg(x) is the degree of a node

n is the number of distinct
neighbors

The average log gap cost can be
proxied with

deg(x) X log(

deg(x)+ 1)

Dhulipala et al. Compressing graphs and indexes with recursive graph bisection. KDD 2016

Graph Bisection

n e’ : = m n
i deg)(x) X log(den +1)+ degy(x) X log(degz(x) 1)—— é{a’e‘gl(x) 1) x log(4o)+ (degy(x) + 1) X log(den,0 12)

Bisect the graph in two sets

Compute move gains of the vertices. The
difference in average logarithmic gap length
between remaining and moving

Swap vertices between the two sets

Repeat recursively until stopping condition
triggers

Recursive Graph Bisection

O 0O
® 9

O
ONGO)

O%
@0

ONNG)
O

% O
®e

Dynamic Superblock Pruning

Unpruned 1 vjsit all superblocks and prune

Pruned N4 (XX} oo

blocks
and score

oo unpruned
[

Two-tier index: group consecutive document blocks into fixed-size superblocks (e.g., 64 blocks)

Top-down test: first bound each superblock; prune it if both max- and avg-score < 6/, 6/n, then
descend to surviving blocks

Carlson et al. Dynamic Superblock Pruning for Fast Learned Sparse Retrieval. SIGIR 2025

Dynamic Superblock Pruning

Table 1: Mean response time (ms) and mean reciprocal rank
(MRR@10) at a fixed Recall@k budget for SPLADE

Recall 99% 99.5% 99.9% Rank-Safe
Budget MRT MRR MRT MRR MRT MRR MRT MRR
k=10
MaxScore - - - - - - 75.7 (35x) 38.1
ASC 470 (75x) 379 559(7.8x) 381 6.44(8.2x) 381 7.19(3.3x) 38.1
Seismic 2.06 (3.3x) 38.1 257(3.6x) 382 3.01(3.8x) 384 - -
BMP 144 (23x) 381 1.49(2.1x) 381 1.88(24x) 382 2.70(1.3x) 38.1
SP 0.629 37.7 0.715 37.9 0.785 38.1 2.15 38.1
k=1000
MaxScore - - - - - - 124 (12x) 38.1
ASC 15.8 (9.1x) 381 189(9.4x) 381 254(55x) 381 33.5(3.2x) 38.1
Seismic | 5.72(3.3x) 383 7.18(3.6x) 384 10.5(2.3x) 384 N =
BMP 499 (2.9x) 382 5.25(2.6x) 382 7.26(1.6x) 382 13.9(1.3x) 38.1
SP 1.74 37.9 2.01 37.9 4.64 38.2 10.5 38.1

SPRAWL

Sorted PRefix Access With Lookups

Prefix Index Hash Table Full Index
single terms inverted index
cat [I | cat [7]
[] key: docID 1
dog [T] value1: dog [1]
Accumulation :
: total score I
term pairs |
value2:
catdog] bitset —
e monkey [1]
dogmonkey [T]

It uses a two-tier in-memory index:
e A prefix index that stores top-scoring postings (sorted by impact scores in descending
order) for frequent terms and pairs of terms.
e Astandard inverted index that containing all standard (single-term) postings and that
efficiently supports random lookups.

Gou et al. "Fast and Effective Early Termination for Simple Ranking Functions." SIGIR 2025.

Rough notes/stuff we need

- Relevant links to bibliographies

- Relevant links to PISA/PyTerrier/Slack Channes/Resources/etc
- Guide on contributing to PISA

- Other codebases of interest (broader PISA/Terrier/etc projects)

Session lll: Future Directions / Soapboxes

Joel's Soapbox

Long live the inverted index!

Moving towards Rust.

Sean’s Soapbox

The PISA Ecosystem

CIFF

Common Index File Format CIFF is an inverted index exchange format as
defined as part of the Open-Source IR Replicability Challenge (OSIRRC)
initiative.

We built tools to convert:
e a CIFF blob to a PISA canonical: ciff2pisa

e a PISA canonical to a CIFF blob: pisa2ciff
e a JSONL file to a CIFF blob: jsonl2ciff

message Header {
int32 version = 1;
int32 num_postings_lists = 2;
int32 num_docs = 3;
int32 total_postings_lists = 4;
int32 total_docs = 5;
int64 total_terms_in_collection = 6;
double average_doclength = 7;
string description = 8;

}

message Posting {
int32 docid = 1;
int32 tf = 2;

}

message PostingsList {
string term = 1;

int64 df = 2;
int64 cf = 3;
repeated Posting postings = 4;

}

message DocRecord {
int32 docid = 1;
string collection_docid = 2;
int32 doclength = 3;

}

Figure 1: Protobuf definitions of messages in CIFF.

Jimmy Lin et al. Supporting Interoperability Between Open-Source Search Engines with the Common Index File Format. SIGIR 2020.

CIFF-Hub

CIFF Hub

Common Index File Format CIFF is an inverted index exchange format as defined as part of the Open-Source IR
Replicability Challenge (OSIRRC) initiative.

The Ciff Hub hosts many indexes and queries for a variety of collections and models.

Python Integration

Trades off some flexibility and efficiency for convenience.

Indexing:

Q
from pyterrier_pisa import Pisalndex

index from your own data:

index = Pisalndex('my-index.pisa')

index. index([
{'docno': '1', 'text': 'Check out the PISA engine!'},
{'docno': '2', 'text': 'Here is the Python integration'},

])...

index from a huggingface dataset:

from datasets import load_dataset

index = Pisalndex('arthur-conan-doyle.pisa')
index.index(load_dataset('macavaney/arthur-conan-doyle'))

2N\
Terrier:

Python Integration

Trades off some flexibility and efficiency for convenience.

Retrieval:

from pyterrier_pisa import Pisalndex

index = Pisalndex('msmarco-passage.pisa')
bm25 = index.bm25()
bm25.search('pisa engine')

gid

1 pisa
pisa
pisa
pisa
pisa

query
engine
engine
engine
engine
engine

docno
7378605
49001
3322192
4800437
2480271

score
18.529522
17.285473
17.025841
16.870358
16.774212

rank

2N\
Terrier:

Python Integration

Trades off some flexibility and efficiency for convenience.

Sharing Indexes:

[
from pyterrier_pisa import Pisalndex

share an index to huggingface

Pisalndex.to_hf('macavaney/my-index.pisa')

load an index from huggingface
PisaIndex.from_hf('macavaney/msmarco-passage.pisa')

https://huggingface.co/datasets?other=pyterrier-artifact.sparse index.pisa Terrig\rf}

https://huggingface.co/datasets?other=pyterrier-artifact.sparse_index.pisa

The future of the PISA engine

e We want to build a more user-friendly platform.
e Seamless notebooks - one-command Colab template.
e First-class LSR support.

e MCP server - lightweight micro-control-plane exposing REST/gRPC endpoints for search &
index-management

e Al hooks for RAG: flexible connectors that integrate embedding, hybrid retrieval, and LLM
post-processing.

Cascading Retrieval

Build a multi-level architecture, from simple to complex (= cheap to expensive)

First-phase
ranking

= JY

\ 4

Second-phase
ranking

Complex

Ranker

\4

Third-phase
ranking

Complex

Ranker

Hybrid Retrieval

Perform hybrid retrieval via rank fusion mechanisms

Fusion for Information Retrieval is the the process of
combining multiple sources of information to produce a
single result list in response to a query.

Reranking

Two-stage retrieval process inverted index-based candidate generation and multi-vector
reranking.

Table 3. Effectiveness metrics and mean response time (MRT, in ms) for top-10 re-
trieval using PLAID vs. two-stage on Dev Queries, TREC 2019, and TREC 2020.

Dev TREC 2019 TREC 2020
MRR MRT nDCG@10 MRT nDCG@10 MRT
ColBERT 39.99 51.25 74.26 51.46 73.99 50.21
ESPLADE 38.75 3.07 7133 3.13 71.14 3.20

+ ConstBERT32 39.52 4.95 7438 550 74.33 5.23

MacAvaney et al. "Efficient Constant-Space Multi-vector Retrieval." ECIR 2025.

